Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 2001 Jul;109(7):675–680. doi: 10.1289/ehp.01109675

Perinatal exposure to low doses of bisphenol A affects body weight, patterns of estrous cyclicity, and plasma LH levels.

B S Rubin 1, M K Murray 1, D A Damassa 1, J C King 1, A M Soto 1
PMCID: PMC1240370  PMID: 11485865

Abstract

The nonsteroidal estrogenic compound bisphenol A (BPA) is a monomer used in the manufacture of polycarbonate plastics and resins. BPA may be ingested by humans as it reportedly leaches from the lining of tin cans into foods, from dental sealants into saliva, and from polycarbonate bottles into their contents. Because BPA is weakly estrogenic--approximately 10,000-fold less potent than 17beta-estradiol--current environmental exposure levels have been considered orders of magnitude below the dose required for adverse effects on health. Herein we demonstrate measurable effects on the offspring of Sprague-Dawley female rats that were exposed, via their drinking water, to approximately 0.1 mg BPA/kg body weight (bw)/day (low dose) or 1.2 mg BPA/kg bw/day (high dose) from day 6 of pregnancy through the period of lactation. Offspring exposed to BPA exhibited an increase in body weight that was apparent soon after birth and continued into adulthood. In addition, female offspring exposed perinatally to the high dose of BPA exhibited altered patterns of estrous cyclicity and decreased levels of plasma luteinizing hormone (LH) in adulthood. Administration of neither the doses of BPA that caused effects during perinatal exposure nor a 10-fold higher dose was able to evoke a uterotropic response in ovariectomized postpubertal females. These data indicate an increased sensitivity to BPA during the perinatal period and suggest the need for careful evaluation of the current levels of exposure to this compound.

Full Text

The Full Text of this article is available as a PDF (92.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen H. R., Andersson A. M., Arnold S. F., Autrup H., Barfoed M., Beresford N. A., Bjerregaard P., Christiansen L. B., Gissel B., Hummel R. Comparison of short-term estrogenicity tests for identification of hormone-disrupting chemicals. Environ Health Perspect. 1999 Feb;107 (Suppl 1):89–108. doi: 10.1289/ehp.99107s189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ashby J., Tinwell H. Uterotrophic activity of bisphenol A in the immature rat. Environ Health Perspect. 1998 Nov;106(11):719–720. doi: 10.1289/ehp.98106719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Breedlove S. M. Sexual dimorphism in the vertebrate nervous system. J Neurosci. 1992 Nov;12(11):4133–4142. doi: 10.1523/JNEUROSCI.12-11-04133.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brotons J. A., Olea-Serrano M. F., Villalobos M., Pedraza V., Olea N. Xenoestrogens released from lacquer coatings in food cans. Environ Health Perspect. 1995 Jun;103(6):608–612. doi: 10.1289/ehp.95103608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chun T. Y., Gorski J. High concentrations of bisphenol A induce cell growth and prolactin secretion in an estrogen-responsive pituitary tumor cell line. Toxicol Appl Pharmacol. 2000 Feb 1;162(3):161–165. doi: 10.1006/taap.1999.8840. [DOI] [PubMed] [Google Scholar]
  6. Clemens L. G., Gladue B. A., Coniglio L. P. Prenatal endogenous androgenic influences on masculine sexual behavior and genital morphology in male and female rats. Horm Behav. 1978 Feb;10(1):40–53. doi: 10.1016/0018-506x(78)90023-5. [DOI] [PubMed] [Google Scholar]
  7. Colborn T., vom Saal F. S., Soto A. M. Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environ Health Perspect. 1993 Oct;101(5):378–384. doi: 10.1289/ehp.93101378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Coldham N. G., Dave M., Sivapathasundaram S., McDonnell D. P., Connor C., Sauer M. J. Evaluation of a recombinant yeast cell estrogen screening assay. Environ Health Perspect. 1997 Jul;105(7):734–742. doi: 10.1289/ehp.97105734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Colerangle J. B., Roy D. Profound effects of the weak environmental estrogen-like chemical bisphenol A on the growth of the mammary gland of Noble rats. J Steroid Biochem Mol Biol. 1997 Jan;60(1-2):153–160. doi: 10.1016/s0960-0760(96)00130-6. [DOI] [PubMed] [Google Scholar]
  10. Crain D. A., Noriega N., Vonier P. M., Arnold S. F., McLachlan J. A., Guillette L. J., Jr Cellular bioavailability of natural hormones and environmental contaminants as a function of serum and cytosolic binding factors. Toxicol Ind Health. 1998 Jan-Apr;14(1-2):261–273. doi: 10.1177/074823379801400116. [DOI] [PubMed] [Google Scholar]
  11. Diel P., Schulz T., Smolnikar K., Strunck E., Vollmer G., Michna H. Ability of xeno- and phytoestrogens to modulate expression of estrogen-sensitive genes in rat uterus: estrogenicity profiles and uterotropic activity. J Steroid Biochem Mol Biol. 2000 May;73(1-2):1–10. doi: 10.1016/s0960-0760(00)00051-0. [DOI] [PubMed] [Google Scholar]
  12. Ekbom A., Trichopoulos D., Adami H. O., Hsieh C. C., Lan S. J. Evidence of prenatal influences on breast cancer risk. Lancet. 1992 Oct 24;340(8826):1015–1018. doi: 10.1016/0140-6736(92)93019-j. [DOI] [PubMed] [Google Scholar]
  13. Fang H., Tong W., Perkins R., Soto A. M., Prechtl N. V., Sheehan D. M. Quantitative comparisons of in vitro assays for estrogenic activities. Environ Health Perspect. 2000 Aug;108(8):723–729. doi: 10.1289/ehp.00108723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Farabollini F., Porrini S., Dessì-Fulgherit F. Perinatal exposure to the estrogenic pollutant bisphenol A affects behavior in male and female rats. Pharmacol Biochem Behav. 1999 Dec;64(4):687–694. doi: 10.1016/s0091-3057(99)00136-7. [DOI] [PubMed] [Google Scholar]
  15. Gorski R. A. Influence of age on the response to paranatal administration of a low dose of androgen. Endocrinology. 1968 May;82(5):1001–1004. doi: 10.1210/endo-82-5-1001. [DOI] [PubMed] [Google Scholar]
  16. Gould J. C., Leonard L. S., Maness S. C., Wagner B. L., Conner K., Zacharewski T., Safe S., McDonnell D. P., Gaido K. W. Bisphenol A interacts with the estrogen receptor alpha in a distinct manner from estradiol. Mol Cell Endocrinol. 1998 Jul 25;142(1-2):203–214. doi: 10.1016/s0303-7207(98)00084-7. [DOI] [PubMed] [Google Scholar]
  17. Gupta C. Reproductive malformation of the male offspring following maternal exposure to estrogenic chemicals. Proc Soc Exp Biol Med. 2000 Jun;224(2):61–68. doi: 10.1046/j.1525-1373.2000.22402.x. [DOI] [PubMed] [Google Scholar]
  18. Hernández-Tristán R., Arevalo C., Canals S. Effect of prenatal uterine position on male and female rats sexual behavior. Physiol Behav. 1999 Sep;67(3):401–408. doi: 10.1016/s0031-9384(99)00077-3. [DOI] [PubMed] [Google Scholar]
  19. Howdeshell K. L., Hotchkiss A. K., Thayer K. A., Vandenbergh J. G., vom Saal F. S. Exposure to bisphenol A advances puberty. Nature. 1999 Oct 21;401(6755):763–764. doi: 10.1038/44517. [DOI] [PubMed] [Google Scholar]
  20. Kuiper G. G., Lemmen J. G., Carlsson B., Corton J. C., Safe S. H., van der Saag P. T., van der Burg B., Gustafsson J. A. Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology. 1998 Oct;139(10):4252–4263. doi: 10.1210/endo.139.10.6216. [DOI] [PubMed] [Google Scholar]
  21. Kwon S., Stedman D. B., Elswick B. A., Cattley R. C., Welsch F. Pubertal development and reproductive functions of Crl:CD BR Sprague-Dawley rats exposed to bisphenol A during prenatal and postnatal development. Toxicol Sci. 2000 Jun;55(2):399–406. doi: 10.1093/toxsci/55.2.399. [DOI] [PubMed] [Google Scholar]
  22. Laws S. C., Carey S. A., Ferrell J. M., Bodman G. J., Cooper R. L. Estrogenic activity of octylphenol, nonylphenol, bisphenol A and methoxychlor in rats. Toxicol Sci. 2000 Mar;54(1):154–167. doi: 10.1093/toxsci/54.1.154. [DOI] [PubMed] [Google Scholar]
  23. Lillo Lillo M., Vidal Company A., Barrio Merino A., Rodríguez Martín A., García Llop L. Invaginación intestinal: añadimos sal al bario? An Esp Pediatr. 1992 Apr;36(4):309–310. [PubMed] [Google Scholar]
  24. MacLusky N. J., Naftolin F. Sexual differentiation of the central nervous system. Science. 1981 Mar 20;211(4488):1294–1302. doi: 10.1126/science.6163211. [DOI] [PubMed] [Google Scholar]
  25. Madrid J. A., Lopez-Bote C., Martín E. Effect of neonatal androgenization on the circadian rhythm of feeding behavior in rats. Physiol Behav. 1993 Feb;53(2):329–335. doi: 10.1016/0031-9384(93)90213-y. [DOI] [PubMed] [Google Scholar]
  26. Markey C. M., Michaelson C. L., Veson E. C., Sonnenschein C., Soto A. M. The mouse uterotrophic assay: a reevaluation of its validity in assessing the estrogenicity of bisphenol A. Environ Health Perspect. 2001 Jan;109(1):55–60. doi: 10.1289/ehp.0110955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Nagel S. C., vom Saal F. S., Thayer K. A., Dhar M. G., Boechler M., Welshons W. V. Relative binding affinity-serum modified access (RBA-SMA) assay predicts the relative in vivo bioactivity of the xenoestrogens bisphenol A and octylphenol. Environ Health Perspect. 1997 Jan;105(1):70–76. doi: 10.1289/ehp.9710570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Nagel S. C., vom Saal F. S., Welshons W. V. The effective free fraction of estradiol and xenoestrogens in human serum measured by whole cell uptake assays: physiology of delivery modifies estrogenic activity. Proc Soc Exp Biol Med. 1998 Mar;217(3):300–309. doi: 10.3181/00379727-217-44236. [DOI] [PubMed] [Google Scholar]
  29. Olea N., Pulgar R., Pérez P., Olea-Serrano F., Rivas A., Novillo-Fertrell A., Pedraza V., Soto A. M., Sonnenschein C. Estrogenicity of resin-based composites and sealants used in dentistry. Environ Health Perspect. 1996 Mar;104(3):298–305. doi: 10.1289/ehp.96104298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Pennie W. D., Aldridge T. C., Brooks A. N. Differential activation by xenoestrogens of ER alpha and ER beta when linked to different response elements. J Endocrinol. 1998 Sep;158(3):R11–R14. doi: 10.1677/joe.0.158r011. [DOI] [PubMed] [Google Scholar]
  31. Pottenger L. H., Domoradzki J. Y., Markham D. A., Hansen S. C., Cagen S. Z., Waechter J. M., Jr The relative bioavailability and metabolism of bisphenol A in rats is dependent upon the route of administration. Toxicol Sci. 2000 Mar;54(1):3–18. doi: 10.1093/toxsci/54.1.3. [DOI] [PubMed] [Google Scholar]
  32. Richmond G., Sachs B. D. Further evidence for masculinization of female rats by males located caudally in utero. Horm Behav. 1984 Dec;18(4):484–490. doi: 10.1016/0018-506x(84)90032-1. [DOI] [PubMed] [Google Scholar]
  33. Safe S. H. Environmental and dietary estrogens and human health: is there a problem? Environ Health Perspect. 1995 Apr;103(4):346–351. doi: 10.1289/ehp.95103346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sheehan D. M., Willingham E., Gaylor D., Bergeron J. M., Crews D. No threshold dose for estradiol-induced sex reversal of turtle embryos: how little is too much? Environ Health Perspect. 1999 Feb;107(2):155–159. doi: 10.1289/ehp.99107155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sheehan D. M., Young M. Diethylstilbestrol and estradiol binding to serum albumin and pregnancy plasma of rat and human. Endocrinology. 1979 May;104(5):1442–1446. doi: 10.1210/endo-104-5-1442. [DOI] [PubMed] [Google Scholar]
  36. Sohoni P., Sumpter J. P. Several environmental oestrogens are also anti-androgens. J Endocrinol. 1998 Sep;158(3):327–339. doi: 10.1677/joe.0.1580327. [DOI] [PubMed] [Google Scholar]
  37. Steinmetz R., Brown N. G., Allen D. L., Bigsby R. M., Ben-Jonathan N. The environmental estrogen bisphenol A stimulates prolactin release in vitro and in vivo. Endocrinology. 1997 May;138(5):1780–1786. doi: 10.1210/endo.138.5.5132. [DOI] [PubMed] [Google Scholar]
  38. Steinmetz R., Mitchner N. A., Grant A., Allen D. L., Bigsby R. M., Ben-Jonathan N. The xenoestrogen bisphenol A induces growth, differentiation, and c-fos gene expression in the female reproductive tract. Endocrinology. 1998 Jun;139(6):2741–2747. doi: 10.1210/endo.139.6.6027. [DOI] [PubMed] [Google Scholar]
  39. Thompson W. D., Janerich D. T. Maternal age at birth and risk of breast cancer in daughters. Epidemiology. 1990 Mar;1(2):101–106. doi: 10.1097/00001648-199003000-00004. [DOI] [PubMed] [Google Scholar]
  40. vom Saal F. S., Cooke P. S., Buchanan D. L., Palanza P., Thayer K. A., Nagel S. C., Parmigiani S., Welshons W. V. A physiologically based approach to the study of bisphenol A and other estrogenic chemicals on the size of reproductive organs, daily sperm production, and behavior. Toxicol Ind Health. 1998 Jan-Apr;14(1-2):239–260. doi: 10.1177/074823379801400115. [DOI] [PubMed] [Google Scholar]
  41. vom Saal F. S. Sexual differentiation in litter-bearing mammals: influence of sex of adjacent fetuses in utero. J Anim Sci. 1989 Jul;67(7):1824–1840. doi: 10.2527/jas1989.6771824x. [DOI] [PubMed] [Google Scholar]
  42. vom Saal F. S., Timms B. G., Montano M. M., Palanza P., Thayer K. A., Nagel S. C., Dhar M. D., Ganjam V. K., Parmigiani S., Welshons W. V. Prostate enlargement in mice due to fetal exposure to low doses of estradiol or diethylstilbestrol and opposite effects at high doses. Proc Natl Acad Sci U S A. 1997 Mar 4;94(5):2056–2061. doi: 10.1073/pnas.94.5.2056. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES