Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 May;74(5):2318–2326. doi: 10.1016/S0006-3495(98)77941-X

Interaction of permeant and blocking ions in cloned inward-rectifier K+ channels.

D Oliver 1, H Hahn 1, C Antz 1, J P Ruppersberg 1, B Fakler 1
PMCID: PMC1299575  PMID: 9591659

Abstract

Blocking cloned inward-rectifier potassium (Kir) channels from the cytoplasmic side was analyzed with a rapid application system exchanging the intracellular solution on giant inside-out patches from Xenopus oocytes in <2 ms. Dependence of the pore-block on interaction of the blocking molecule with permeant and impermeant ions on either side of the membrane was investigated in Kir1.1 (ROMK1) channels blocked by ammonium derivatives and in Kir4.1 (BIR10) channels blocked by spermine. The blocking reaction in both systems showed first-order kinetics and allowed separate determination of on- and off-rates. The off-rates of block were strongly dependent on the concentration of internal and external bulk ions, but almost independent of the ion species at the cytoplasmic side of the membrane. With K+ as the only cation on both sides of the membrane, off-rates exhibited strong coupling to the K+ reversal potential (E(K)) and increased and decreased with reduction in intra and extracellular K+ concentration, respectively. The on-rates showed significant dependence on concentration and species of internal bulk ions. This control of rate-constants by interaction of permeant and impermeant internal and external ions governs the steady-state current-voltage relation (I-V) of Kir channels and determines their physiological function under various conditions.

Full Text

The Full Text of this article is available as a PDF (184.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cohen I. S., DiFrancesco D., Mulrine N. K., Pennefather P. Internal and external K+ help gate the inward rectifier. Biophys J. 1989 Jan;55(1):197–202. doi: 10.1016/S0006-3495(89)82792-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Doupnik C. A., Davidson N., Lester H. A. The inward rectifier potassium channel family. Curr Opin Neurobiol. 1995 Jun;5(3):268–277. doi: 10.1016/0959-4388(95)80038-7. [DOI] [PubMed] [Google Scholar]
  3. Fakler B., Brändle U., Bond C., Glowatzki E., König C., Adelman J. P., Zenner H. P., Ruppersberg J. P. A structural determinant of differential sensitivity of cloned inward rectifier K+ channels to intracellular spermine. FEBS Lett. 1994 Dec 19;356(2-3):199–203. doi: 10.1016/0014-5793(94)01258-x. [DOI] [PubMed] [Google Scholar]
  4. Fakler B., Brändle U., Glowatzki E., Weidemann S., Zenner H. P., Ruppersberg J. P. Strong voltage-dependent inward rectification of inward rectifier K+ channels is caused by intracellular spermine. Cell. 1995 Jan 13;80(1):149–154. doi: 10.1016/0092-8674(95)90459-x. [DOI] [PubMed] [Google Scholar]
  5. Fakler B., Brändle U., Glowatzki E., Zenner H. P., Ruppersberg J. P. Kir2.1 inward rectifier K+ channels are regulated independently by protein kinases and ATP hydrolysis. Neuron. 1994 Dec;13(6):1413–1420. doi: 10.1016/0896-6273(94)90426-x. [DOI] [PubMed] [Google Scholar]
  6. Fakler B., Schultz J. H., Yang J., Schulte U., Brandle U., Zenner H. P., Jan L. Y., Ruppersberg J. P. Identification of a titratable lysine residue that determines sensitivity of kidney potassium channels (ROMK) to intracellular pH. EMBO J. 1996 Aug 15;15(16):4093–4099. [PMC free article] [PubMed] [Google Scholar]
  7. Ficker E., Taglialatela M., Wible B. A., Henley C. M., Brown A. M. Spermine and spermidine as gating molecules for inward rectifier K+ channels. Science. 1994 Nov 11;266(5187):1068–1072. doi: 10.1126/science.7973666. [DOI] [PubMed] [Google Scholar]
  8. Glowatzki E., Fakler G., Brändle U., Rexhausen U., Zenner H. P., Ruppersberg J. P., Fakler B. Subunit-dependent assembly of inward-rectifier K+ channels. Proc Biol Sci. 1995 Aug 22;261(1361):251–261. doi: 10.1098/rspb.1995.0145. [DOI] [PubMed] [Google Scholar]
  9. Hagiwara S., Miyazaki S., Rosenthal N. P. Potassium current and the effect of cesium on this current during anomalous rectification of the egg cell membrane of a starfish. J Gen Physiol. 1976 Jun;67(6):621–638. doi: 10.1085/jgp.67.6.621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Leech C. A., Stanfield P. R. Inward rectification in frog skeletal muscle fibres and its dependence on membrane potential and external potassium. J Physiol. 1981;319:295–309. doi: 10.1113/jphysiol.1981.sp013909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lopatin A. N., Makhina E. N., Nichols C. G. Potassium channel block by cytoplasmic polyamines as the mechanism of intrinsic rectification. Nature. 1994 Nov 24;372(6504):366–369. doi: 10.1038/372366a0. [DOI] [PubMed] [Google Scholar]
  12. Lopatin A. N., Makhina E. N., Nichols C. G. The mechanism of inward rectification of potassium channels: "long-pore plugging" by cytoplasmic polyamines. J Gen Physiol. 1995 Nov;106(5):923–955. doi: 10.1085/jgp.106.5.923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lopatin A. N., Nichols C. G. [K+] dependence of polyamine-induced rectification in inward rectifier potassium channels (IRK1, Kir2.1). J Gen Physiol. 1996 Aug;108(2):105–113. doi: 10.1085/jgp.108.2.105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lu Z., MacKinnon R. Electrostatic tuning of Mg2+ affinity in an inward-rectifier K+ channel. Nature. 1994 Sep 15;371(6494):243–246. doi: 10.1038/371243a0. [DOI] [PubMed] [Google Scholar]
  15. Matsuda H. Effects of external and internal K+ ions on magnesium block of inwardly rectifying K+ channels in guinea-pig heart cells. J Physiol. 1991 Apr;435:83–99. doi: 10.1113/jphysiol.1991.sp018499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Taglialatela M., Ficker E., Wible B. A., Brown A. M. C-terminus determinants for Mg2+ and polyamine block of the inward rectifier K+ channel IRK1. EMBO J. 1995 Nov 15;14(22):5532–5541. doi: 10.1002/j.1460-2075.1995.tb00240.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Vandenberg C. A. Inward rectification of a potassium channel in cardiac ventricular cells depends on internal magnesium ions. Proc Natl Acad Sci U S A. 1987 Apr;84(8):2560–2564. doi: 10.1073/pnas.84.8.2560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Wible B. A., Taglialatela M., Ficker E., Brown A. M. Gating of inwardly rectifying K+ channels localized to a single negatively charged residue. Nature. 1994 Sep 15;371(6494):246–249. doi: 10.1038/371246a0. [DOI] [PubMed] [Google Scholar]
  19. Woodhull A. M. Ionic blockage of sodium channels in nerve. J Gen Physiol. 1973 Jun;61(6):687–708. doi: 10.1085/jgp.61.6.687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Yang J., Jan Y. N., Jan L. Y. Control of rectification and permeation by residues in two distinct domains in an inward rectifier K+ channel. Neuron. 1995 May;14(5):1047–1054. doi: 10.1016/0896-6273(95)90343-7. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES