Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Jan;78(1):520–535. doi: 10.1016/S0006-3495(00)76614-8

Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: an atomic force microscopy study.

C Rotsch 1, M Radmacher 1
PMCID: PMC1300659  PMID: 10620315

Abstract

The effect of various drugs affecting the integrity of different components of the cytoskeleton on the elasticity of two fibroblast cell lines was investigated by elasticity measurements with an atomic force microscope (AFM). Disaggregation of actin filaments always resulted in a distinct decrease in the cell's average elastic modulus indicating the crucial importance of the actin network for the mechanical stability of living cells. Disruption or chemical stabilization of microtubules did not affect cell elasticity. For the f-actin-disrupting drugs different mechanisms of drug action were observed. Cytochalasins B and D and Latrunculin A disassembled stress fibers. For Cytochalasin D this was accompanied by an aggregation of actin within the cytosol. Jasplakinolide disaggregated actin filaments but did not disassemble stress fibers. Fibrous structures found in AFM images and elasticity maps of fibroblasts could be identified as stress fibers by correlation of AFM data and fluorescence images.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. A-Hassan E., Heinz W. F., Antonik M. D., D'Costa N. P., Nageswaran S., Schoenenberger C. A., Hoh J. H. Relative microelastic mapping of living cells by atomic force microscopy. Biophys J. 1998 Mar;74(3):1564–1578. doi: 10.1016/S0006-3495(98)77868-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Binnig G, Quate CF, Gerber C. Atomic force microscope. Phys Rev Lett. 1986 Mar 3;56(9):930–933. doi: 10.1103/PhysRevLett.56.930. [DOI] [PubMed] [Google Scholar]
  3. Bray D. Cytochalasin action. Nature. 1979 Dec 13;282(5740):671–671. doi: 10.1038/282671a0. [DOI] [PubMed] [Google Scholar]
  4. Brett J. G., Godman G. C. Macrovacuolation induced by cytochalasin: its relation to the cytoskeleton; morphological and cytochemical observations. Tissue Cell. 1984;16(3):311–324. doi: 10.1016/0040-8166(84)90051-x. [DOI] [PubMed] [Google Scholar]
  5. Bubb M. R., Senderowicz A. M., Sausville E. A., Duncan K. L., Korn E. D. Jasplakinolide, a cytotoxic natural product, induces actin polymerization and competitively inhibits the binding of phalloidin to F-actin. J Biol Chem. 1994 May 27;269(21):14869–14871. [PubMed] [Google Scholar]
  6. Coluccio L. M., Tilney L. G. Phalloidin enhances actin assembly by preventing monomer dissociation. J Cell Biol. 1984 Aug;99(2):529–535. doi: 10.1083/jcb.99.2.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cooper J. A. Effects of cytochalasin and phalloidin on actin. J Cell Biol. 1987 Oct;105(4):1473–1478. doi: 10.1083/jcb.105.4.1473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Coué M., Brenner S. L., Spector I., Korn E. D. Inhibition of actin polymerization by latrunculin A. FEBS Lett. 1987 Mar 23;213(2):316–318. doi: 10.1016/0014-5793(87)81513-2. [DOI] [PubMed] [Google Scholar]
  9. Drake B., Prater C. B., Weisenhorn A. L., Gould S. A., Albrecht T. R., Quate C. F., Cannell D. S., Hansma H. G., Hansma P. K. Imaging crystals, polymers, and processes in water with the atomic force microscope. Science. 1989 Mar 24;243(4898):1586–1589. doi: 10.1126/science.2928794. [DOI] [PubMed] [Google Scholar]
  10. Duncan M. D., Harmon J. W., Duncan L. K. Actin disruption inhibits bombesin stimulation of focal adhesion kinase (pp125FAK) in prostate carcinoma. J Surg Res. 1996 Jun;63(1):359–363. doi: 10.1006/jsre.1996.0276. [DOI] [PubMed] [Google Scholar]
  11. Dvorak J. A., Nagao E. Kinetic analysis of the mitotic cycle of living vertebrate cells by atomic force microscopy. Exp Cell Res. 1998 Jul 10;242(1):69–74. doi: 10.1006/excr.1998.4077. [DOI] [PubMed] [Google Scholar]
  12. Elson E. L. Cellular mechanics as an indicator of cytoskeletal structure and function. Annu Rev Biophys Biophys Chem. 1988;17:397–430. doi: 10.1146/annurev.bb.17.060188.002145. [DOI] [PubMed] [Google Scholar]
  13. Frimmer M. Mode of action of phalloidin. Curr Probl Clin Biochem. 1977;7:29–36. [PubMed] [Google Scholar]
  14. Fritz M., Radmacher M., Gaub H. E. Granula motion and membrane spreading during activation of human platelets imaged by atomic force microscopy. Biophys J. 1994 May;66(5):1328–1334. doi: 10.1016/S0006-3495(94)80963-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Godman G., Woda B., Kolberg R., Berl S. Redistribution of contractile and cytoskeletal components induced by cytochalasin. I. In Hmf cells, a nontransformed fibroblastoid line. Eur J Cell Biol. 1980 Oct;22(2):733–744. [PubMed] [Google Scholar]
  16. Godman G., Woda B., Kolberg R., Berl S. Redistribution of contractile and cytoskeletal components induced by cytochalasin. II. In HeLa and HEp2 cells. Eur J Cell Biol. 1980 Oct;22(2):745–754. [PubMed] [Google Scholar]
  17. Haydon P. G., Lartius R., Parpura V., Marchese-Ragona S. P. Membrane deformation of living glial cells using atomic force microscopy. J Microsc. 1996 May;182(Pt 2):114–120. doi: 10.1046/j.1365-2818.1996.141423.x. [DOI] [PubMed] [Google Scholar]
  18. Henderson E., Haydon P. G., Sakaguchi D. S. Actin filament dynamics in living glial cells imaged by atomic force microscopy. Science. 1992 Sep 25;257(5078):1944–1946. doi: 10.1126/science.1411511. [DOI] [PubMed] [Google Scholar]
  19. Hofmann U. G., Rotsch C., Parak W. J., Radmacher M. Investigating the cytoskeleton of chicken cardiocytes with the atomic force microscope. J Struct Biol. 1997 Jul;119(2):84–91. doi: 10.1006/jsbi.1997.3868. [DOI] [PubMed] [Google Scholar]
  20. Hoh J. H., Schoenenberger C. A. Surface morphology and mechanical properties of MDCK monolayers by atomic force microscopy. J Cell Sci. 1994 May;107(Pt 5):1105–1114. doi: 10.1242/jcs.107.5.1105. [DOI] [PubMed] [Google Scholar]
  21. Lee J., Ishihara A., Jacobson K. How do cells move along surfaces? Trends Cell Biol. 1993 Nov;3(11):366–370. doi: 10.1016/0962-8924(93)90084-e. [DOI] [PubMed] [Google Scholar]
  22. Lyubimova A., Bershadsky A. D., Ben-Ze'ev A. Autoregulation of actin synthesis responds to monomeric actin levels. J Cell Biochem. 1997 Jun 15;65(4):469–478. [PubMed] [Google Scholar]
  23. Manfredi J. J., Parness J., Horwitz S. B. Taxol binds to cellular microtubules. J Cell Biol. 1982 Sep;94(3):688–696. doi: 10.1083/jcb.94.3.688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Müller D. J., Schabert F. A., Büldt G., Engel A. Imaging purple membranes in aqueous solutions at sub-nanometer resolution by atomic force microscopy. Biophys J. 1995 May;68(5):1681–1686. doi: 10.1016/S0006-3495(95)80345-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Oliveira C. A., Chedraoui S., Mantovani B. Latrunculin A is a potent inducer of aggregation of polymorphonuclear leukocytes. Life Sci. 1997;61(6):603–609. doi: 10.1016/s0024-3205(97)00435-9. [DOI] [PubMed] [Google Scholar]
  26. Parness J., Horwitz S. B. Taxol binds to polymerized tubulin in vitro. J Cell Biol. 1981 Nov;91(2 Pt 1):479–487. doi: 10.1083/jcb.91.2.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Petersen N. O., McConnaughey W. B., Elson E. L. Dependence of locally measured cellular deformability on position on the cell, temperature, and cytochalasin B. Proc Natl Acad Sci U S A. 1982 Sep;79(17):5327–5331. doi: 10.1073/pnas.79.17.5327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Radmacher M., Cleveland J. P., Fritz M., Hansma H. G., Hansma P. K. Mapping interaction forces with the atomic force microscope. Biophys J. 1994 Jun;66(6):2159–2165. doi: 10.1016/S0006-3495(94)81011-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Radmacher M., Fritz M., Kacher C. M., Cleveland J. P., Hansma P. K. Measuring the viscoelastic properties of human platelets with the atomic force microscope. Biophys J. 1996 Jan;70(1):556–567. doi: 10.1016/S0006-3495(96)79602-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Radmacher M., Tillamnn R. W., Fritz M., Gaub H. E. From molecules to cells: imaging soft samples with the atomic force microscope. Science. 1992 Sep 25;257(5078):1900–1905. doi: 10.1126/science.1411505. [DOI] [PubMed] [Google Scholar]
  31. Rotsch C., Jacobson K., Radmacher M. Dimensional and mechanical dynamics of active and stable edges in motile fibroblasts investigated by using atomic force microscopy. Proc Natl Acad Sci U S A. 1999 Feb 2;96(3):921–926. doi: 10.1073/pnas.96.3.921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Salmon E. D., McKeel M., Hays T. Rapid rate of tubulin dissociation from microtubules in the mitotic spindle in vivo measured by blocking polymerization with colchicine. J Cell Biol. 1984 Sep;99(3):1066–1075. doi: 10.1083/jcb.99.3.1066. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sampath P., Pollard T. D. Effects of cytochalasin, phalloidin, and pH on the elongation of actin filaments. Biochemistry. 1991 Feb 19;30(7):1973–1980. doi: 10.1021/bi00221a034. [DOI] [PubMed] [Google Scholar]
  34. Schneider S. W., Sritharan K. C., Geibel J. P., Oberleithner H., Jena B. P. Surface dynamics in living acinar cells imaged by atomic force microscopy: identification of plasma membrane structures involved in exocytosis. Proc Natl Acad Sci U S A. 1997 Jan 7;94(1):316–321. doi: 10.1073/pnas.94.1.316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sheikh S., Gratzer W. B., Pinder J. C., Nash G. B. Actin polymerisation regulates integrin-mediated adhesion as well as rigidity of neutrophils. Biochem Biophys Res Commun. 1997 Sep 29;238(3):910–915. doi: 10.1006/bbrc.1997.7407. [DOI] [PubMed] [Google Scholar]
  36. Spector I., Shochet N. R., Blasberger D., Kashman Y. Latrunculins--novel marine macrolides that disrupt microfilament organization and affect cell growth: I. Comparison with cytochalasin D. Cell Motil Cytoskeleton. 1989;13(3):127–144. doi: 10.1002/cm.970130302. [DOI] [PubMed] [Google Scholar]
  37. Spector I., Shochet N. R., Kashman Y., Groweiss A. Latrunculins: novel marine toxins that disrupt microfilament organization in cultured cells. Science. 1983 Feb 4;219(4584):493–495. doi: 10.1126/science.6681676. [DOI] [PubMed] [Google Scholar]
  38. Stossel T. P. On the crawling of animal cells. Science. 1993 May 21;260(5111):1086–1094. doi: 10.1126/science.8493552. [DOI] [PubMed] [Google Scholar]
  39. Tao N. J., Lindsay S. M., Lees S. Measuring the microelastic properties of biological material. Biophys J. 1992 Oct;63(4):1165–1169. doi: 10.1016/S0006-3495(92)81692-2. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES