Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Nov;79(5):2509–2525. doi: 10.1016/S0006-3495(00)76492-7

Divergent functional properties of ryanodine receptor types 1 and 3 expressed in a myogenic cell line.

J D Fessenden 1, Y Wang 1, R A Moore 1, S R Chen 1, P D Allen 1, I N Pessah 1
PMCID: PMC1301134  PMID: 11053126

Abstract

Of the three known ryanodine receptor (RyR) isoforms expressed in muscle, RyR1 and RyR2 have well-defined roles in contraction. However, studies on mammalian RyR3 have been difficult because of low expression levels relative to RyR1 or RyR2. Using the herpes simplex virus 1 (HSV-1) helper-free amplicon system, we expressed either RyR1 or RyR3 in 1B5 RyR-deficient myotubes. Western blot analysis revealed that RyR1- or RyR3-transduced cells expressed the appropriate RyR isoform of the correct molecular mass. Although RyR1 channels exhibited the expected unitary conductance for Cs(+) in bilayer lipid membranes, 74 of 88 RyR3 channels exhibited pronounced subconductance behavior. Western blot analysis with an FKBP12/12.6-selective antibody reveals that differences in gating behavior exhibited by RyR1 and RyR3 may be, in part, the result of lower affinity of RyR3 for FKBP12. In calcium imaging studies, RyR1 restored skeletal-type excitation-contraction coupling, whereas RyR3 did not. Although RyR3-expressing myotubes were more sensitive to caffeine than those expressing RyR1, they were much less sensitive to 4-chloro-m-cresol (CMC). In RyR1-expressing cells, regenerative calcium oscillations were observed in response to caffeine and CMC but were never seen in RyR3-expressing 1B5 cells. In [(3)H]ryanodine binding studies, only RyR1 exhibited sensitivity to CMC, but both RyR isoforms responded to caffeine. These functional differences between RyR1 and RyR3 expressed in a mammalian muscle context may reflect differences in association with accessory proteins, especially FKBP12, as well as structural differences in modulator binding sites.

Full Text

The Full Text of this article is available as a PDF (2.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Airey J. A., Beck C. F., Murakami K., Tanksley S. J., Deerinck T. J., Ellisman M. H., Sutko J. L. Identification and localization of two triad junctional foot protein isoforms in mature avian fast twitch skeletal muscle. J Biol Chem. 1990 Aug 25;265(24):14187–14194. [PubMed] [Google Scholar]
  2. Barg S., Copello J. A., Fleischer S. Different interactions of cardiac and skeletal muscle ryanodine receptors with FK-506 binding protein isoforms. Am J Physiol. 1997 May;272(5 Pt 1):C1726–C1733. doi: 10.1152/ajpcell.1997.272.5.C1726. [DOI] [PubMed] [Google Scholar]
  3. Bertocchini F., Ovitt C. E., Conti A., Barone V., Schöler H. R., Bottinelli R., Reggiani C., Sorrentino V. Requirement for the ryanodine receptor type 3 for efficient contraction in neonatal skeletal muscles. EMBO J. 1997 Dec 1;16(23):6956–6963. doi: 10.1093/emboj/16.23.6956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brillantes A. B., Ondrias K., Scott A., Kobrinsky E., Ondriasová E., Moschella M. C., Jayaraman T., Landers M., Ehrlich B. E., Marks A. R. Stabilization of calcium release channel (ryanodine receptor) function by FK506-binding protein. Cell. 1994 May 20;77(4):513–523. doi: 10.1016/0092-8674(94)90214-3. [DOI] [PubMed] [Google Scholar]
  5. Chen S. R., Li X., Ebisawa K., Zhang L. Functional characterization of the recombinant type 3 Ca2+ release channel (ryanodine receptor) expressed in HEK293 cells. J Biol Chem. 1997 Sep 26;272(39):24234–24246. doi: 10.1074/jbc.272.39.24234. [DOI] [PubMed] [Google Scholar]
  6. Feher J. J., Davis M. D. Isolation of rat cardiac sarcoplasmic reticulum with improved Ca2+ uptake and ryanodine binding. J Mol Cell Cardiol. 1991 Mar;23(3):249–258. doi: 10.1016/0022-2828(91)90061-p. [DOI] [PubMed] [Google Scholar]
  7. Flucher B. E., Andrews S. B. Characterization of spontaneous and action potential-induced calcium transients in developing myotubes in vitro. Cell Motil Cytoskeleton. 1993;25(2):143–157. doi: 10.1002/cm.970250204. [DOI] [PubMed] [Google Scholar]
  8. Flucher B. E., Conti A., Takeshima H., Sorrentino V. Type 3 and type 1 ryanodine receptors are localized in triads of the same mammalian skeletal muscle fibers. J Cell Biol. 1999 Aug 9;146(3):621–630. doi: 10.1083/jcb.146.3.621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Giannini G., Clementi E., Ceci R., Marziali G., Sorrentino V. Expression of a ryanodine receptor-Ca2+ channel that is regulated by TGF-beta. Science. 1992 Jul 3;257(5066):91–94. doi: 10.1126/science.1320290. [DOI] [PubMed] [Google Scholar]
  10. Giannini G., Conti A., Mammarella S., Scrobogna M., Sorrentino V. The ryanodine receptor/calcium channel genes are widely and differentially expressed in murine brain and peripheral tissues. J Cell Biol. 1995 Mar;128(5):893–904. doi: 10.1083/jcb.128.5.893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gschwend M. H., Rüdel R., Brinkmeier H., Taylor S. R., Föhr K. J. A transient and a persistent calcium release are induced by chlorocresol in cultivated mouse myotubes. Pflugers Arch. 1999 Jun;438(1):101–106. doi: 10.1007/s004240050885. [DOI] [PubMed] [Google Scholar]
  12. Hakamata Y., Nakai J., Takeshima H., Imoto K. Primary structure and distribution of a novel ryanodine receptor/calcium release channel from rabbit brain. FEBS Lett. 1992 Nov 9;312(2-3):229–235. doi: 10.1016/0014-5793(92)80941-9. [DOI] [PubMed] [Google Scholar]
  13. Herrmann-Frank A., Richter M., Sarközi S., Mohr U., Lehmann-Horn F. 4-Chloro-m-cresol, a potent and specific activator of the skeletal muscle ryanodine receptor. Biochim Biophys Acta. 1996 Feb 9;1289(1):31–40. doi: 10.1016/0304-4165(95)00131-x. [DOI] [PubMed] [Google Scholar]
  14. Inui M., Saito A., Fleischer S. Isolation of the ryanodine receptor from cardiac sarcoplasmic reticulum and identity with the feet structures. J Biol Chem. 1987 Nov 15;262(32):15637–15642. [PubMed] [Google Scholar]
  15. Ivanenko A., McKemy D. D., Kenyon J. L., Airey J. A., Sutko J. L. Embryonic chicken skeletal muscle cells fail to develop normal excitation-contraction coupling in the absence of the alpha ryanodine receptor. Implications for a two-ryanodine receptor system. J Biol Chem. 1995 Mar 3;270(9):4220–4223. doi: 10.1074/jbc.270.9.4220. [DOI] [PubMed] [Google Scholar]
  16. Jeyakumar L. H., Copello J. A., O'Malley A. M., Wu G. M., Grassucci R., Wagenknecht T., Fleischer S. Purification and characterization of ryanodine receptor 3 from mammalian tissue. J Biol Chem. 1998 Jun 26;273(26):16011–16020. doi: 10.1074/jbc.273.26.16011. [DOI] [PubMed] [Google Scholar]
  17. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  18. Lai F. A., Dent M., Wickenden C., Xu L., Kumari G., Misra M., Lee H. B., Sar M., Meissner G. Expression of a cardiac Ca(2+)-release channel isoform in mammalian brain. Biochem J. 1992 Dec 1;288(Pt 2):553–564. doi: 10.1042/bj2880553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lamb G. D. Ryanodine receptor 'adaptation': a flash in the pan? J Muscle Res Cell Motil. 1997 Dec;18(6):611–616. doi: 10.1023/a:1018675621203. [DOI] [PubMed] [Google Scholar]
  20. Lamb G. D., Stephenson D. G. Effects of FK506 and rapamycin on excitation-contraction coupling in skeletal muscle fibres of the rat. J Physiol. 1996 Jul 15;494(Pt 2):569–576. doi: 10.1113/jphysiol.1996.sp021514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lorenzon P., Giovannelli A., Ragozzino D., Eusebi F., Ruzzier F. Spontaneous and repetitive calcium transients in C2C12 mouse myotubes during in vitro myogenesis. Eur J Neurosci. 1997 Apr;9(4):800–808. doi: 10.1111/j.1460-9568.1997.tb01429.x. [DOI] [PubMed] [Google Scholar]
  22. Marks A. R. Cellular functions of immunophilins. Physiol Rev. 1996 Jul;76(3):631–649. doi: 10.1152/physrev.1996.76.3.631. [DOI] [PubMed] [Google Scholar]
  23. McPherson P. S., Campbell K. P. The ryanodine receptor/Ca2+ release channel. J Biol Chem. 1993 Jul 5;268(19):13765–13768. [PubMed] [Google Scholar]
  24. Moore R. A., Nguyen H., Galceran J., Pessah I. N., Allen P. D. A transgenic myogenic cell line lacking ryanodine receptor protein for homologous expression studies: reconstitution of Ry1R protein and function. J Cell Biol. 1998 Feb 23;140(4):843–851. doi: 10.1083/jcb.140.4.843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Murayama T., Oba T., Katayama E., Oyamada H., Oguchi K., Kobayashi M., Otsuka K., Ogawa Y. Further characterization of the type 3 ryanodine receptor (RyR3) purified from rabbit diaphragm. J Biol Chem. 1999 Jun 11;274(24):17297–17308. doi: 10.1074/jbc.274.24.17297. [DOI] [PubMed] [Google Scholar]
  26. Murayama T., Ogawa Y. Characterization of type 3 ryanodine receptor (RyR3) of sarcoplasmic reticulum from rabbit skeletal muscles. J Biol Chem. 1997 Sep 19;272(38):24030–24037. doi: 10.1074/jbc.272.38.24030. [DOI] [PubMed] [Google Scholar]
  27. Nakai J., Dirksen R. T., Nguyen H. T., Pessah I. N., Beam K. G., Allen P. D. Enhanced dihydropyridine receptor channel activity in the presence of ryanodine receptor. Nature. 1996 Mar 7;380(6569):72–75. doi: 10.1038/380072a0. [DOI] [PubMed] [Google Scholar]
  28. Olivares E. B., Tanksley S. J., Airey J. A., Beck C. F., Ouyang Y., Deerinck T. J., Ellisman M. H., Sutko J. L. Nonmammalian vertebrate skeletal muscles express two triad junctional foot protein isoforms. Biophys J. 1991 Jun;59(6):1153–1163. doi: 10.1016/S0006-3495(91)82331-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Pessah I. N., Francini A. O., Scales D. J., Waterhouse A. L., Casida J. E. Calcium-ryanodine receptor complex. Solubilization and partial characterization from skeletal muscle junctional sarcoplasmic reticulum vesicles. J Biol Chem. 1986 Jul 5;261(19):8643–8648. [PubMed] [Google Scholar]
  30. Protasi F., Franzini-Armstrong C., Allen P. D. Role of ryanodine receptors in the assembly of calcium release units in skeletal muscle. J Cell Biol. 1998 Feb 23;140(4):831–842. doi: 10.1083/jcb.140.4.831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Saeki K., Obi I., Ogiku N., Hakamata Y., Matsumoto T. Characterization of brain-type ryanodine receptor permanently expressed in Chinese hamster ovary cells. Life Sci. 1998;63(7):575–588. doi: 10.1016/s0024-3205(98)00308-7. [DOI] [PubMed] [Google Scholar]
  32. Saito A., Seiler S., Chu A., Fleischer S. Preparation and morphology of sarcoplasmic reticulum terminal cisternae from rabbit skeletal muscle. J Cell Biol. 1984 Sep;99(3):875–885. doi: 10.1083/jcb.99.3.875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sonnleitner A., Conti A., Bertocchini F., Schindler H., Sorrentino V. Functional properties of the ryanodine receptor type 3 (RyR3) Ca2+ release channel. EMBO J. 1998 May 15;17(10):2790–2798. doi: 10.1093/emboj/17.10.2790. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Struk A., Melzer W. Modification of excitation-contraction coupling by 4-chloro-m-cresol in voltage-clamped cut muscle fibres of the frog (R. pipiens). J Physiol. 1999 Feb 15;515(Pt 1):221–231. doi: 10.1111/j.1469-7793.1999.221ad.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Takeshima H., Ikemoto T., Nishi M., Nishiyama N., Shimuta M., Sugitani Y., Kuno J., Saito I., Saito H., Endo M. Generation and characterization of mutant mice lacking ryanodine receptor type 3. J Biol Chem. 1996 Aug 16;271(33):19649–19652. doi: 10.1074/jbc.271.33.19649. [DOI] [PubMed] [Google Scholar]
  36. Takeshima H., Nishimura S., Matsumoto T., Ishida H., Kangawa K., Minamino N., Matsuo H., Ueda M., Hanaoka M., Hirose T. Primary structure and expression from complementary DNA of skeletal muscle ryanodine receptor. Nature. 1989 Jun 8;339(6224):439–445. doi: 10.1038/339439a0. [DOI] [PubMed] [Google Scholar]
  37. Takeshima H., Yamazawa T., Ikemoto T., Takekura H., Nishi M., Noda T., Iino M. Ca(2+)-induced Ca2+ release in myocytes from dyspedic mice lacking the type-1 ryanodine receptor. EMBO J. 1995 Jul 3;14(13):2999–3006. doi: 10.1002/j.1460-2075.1995.tb07302.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Tarroni P., Rossi D., Conti A., Sorrentino V. Expression of the ryanodine receptor type 3 calcium release channel during development and differentiation of mammalian skeletal muscle cells. J Biol Chem. 1997 Aug 8;272(32):19808–19813. doi: 10.1074/jbc.272.32.19808. [DOI] [PubMed] [Google Scholar]
  39. Tegazzin V., Scutari E., Treves S., Zorzato F. Chlorocresol, an additive to commercial succinylcholine, induces contracture of human malignant hyperthermia-susceptible muscles via activation of the ryanodine receptor Ca2+ channel. Anesthesiology. 1996 Jun;84(6):1380–1385. doi: 10.1097/00000542-199606000-00014. [DOI] [PubMed] [Google Scholar]
  40. Timerman A. P., Ogunbumni E., Freund E., Wiederrecht G., Marks A. R., Fleischer S. The calcium release channel of sarcoplasmic reticulum is modulated by FK-506-binding protein. Dissociation and reconstitution of FKBP-12 to the calcium release channel of skeletal muscle sarcoplasmic reticulum. J Biol Chem. 1993 Nov 5;268(31):22992–22999. [PubMed] [Google Scholar]
  41. Wang Y., Fraefel C., Protasi F., Moore R. A., Fessenden J. D., Pessah I. N., DiFrancesco A., Breakefield X., Allen P. D. HSV-1 amplicon vectors are a highly efficient gene delivery system for skeletal muscle myoblasts and myotubes. Am J Physiol Cell Physiol. 2000 Mar;278(3):C619–C626. doi: 10.1152/ajpcell.2000.278.3.C619. [DOI] [PubMed] [Google Scholar]
  42. Westerblad H., Andrade F. H., Islam M. S. Effects of ryanodine receptor agonist 4-chloro-m-cresol on myoplasmic free Ca2+ concentration and force of contraction in mouse skeletal muscle. Cell Calcium. 1998 Aug;24(2):105–115. doi: 10.1016/s0143-4160(98)90078-1. [DOI] [PubMed] [Google Scholar]
  43. Xin H. B., Rogers K., Qi Y., Kanematsu T., Fleischer S. Three amino acid residues determine selective binding of FK506-binding protein 12.6 to the cardiac ryanodine receptor. J Biol Chem. 1999 May 28;274(22):15315–15319. doi: 10.1074/jbc.274.22.15315. [DOI] [PubMed] [Google Scholar]
  44. Yaffe D., Saxel O. Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature. 1977 Dec 22;270(5639):725–727. doi: 10.1038/270725a0. [DOI] [PubMed] [Google Scholar]
  45. Zorzato F., Scutari E., Tegazzin V., Clementi E., Treves S. Chlorocresol: an activator of ryanodine receptor-mediated Ca2+ release. Mol Pharmacol. 1993 Dec;44(6):1192–1201. [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES