Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Nov;81(5):2647–2659. doi: 10.1016/s0006-3495(01)75908-5

I(Ca(TTX)) channels are distinct from those generating the classical cardiac Na(+) current.

Y Chen-Izu 1, Q Sha 1, S R Shorofsky 1, S W Robinson 1, W G Wier 1, L Goldman 1, C W Balke 1
PMCID: PMC1301732  PMID: 11606278

Abstract

The Na(+) current component I(Ca(TTX)) is functionally distinct from the main body of Na(+) current, I(Na). It was proposed that I(Ca(TTX)) channels are I(Na) channels that were altered by bathing media containing Ca(2+), but no, or very little, Na(+). It is known that Na(+)-free conditions are not required to demonstrate I(Ca(TTX).) We show here that Ca(2+) is also not required. Whole-cell, tetrodotoxin-blockable currents from fresh adult rat ventricular cells in 65 mm Cs(+) and no Ca(2+) were compared to those in 3 mM Ca(2+) and no Cs(+) (i.e., I(Ca(TTX))). I(Ca(TTX)) parameters were shifted to more positive voltages than those for Cs(+). The Cs(+) conductance-voltage curve slope factor (mean, -4.68 mV; range, -3.63 to -5.72 mV, eight cells) is indistinguishable from that reported for I(Ca(TTX)) (mean, -4.49 mV; range, -3.95 to -5.49 mV). Cs(+) current and I(Ca(TTX)) time courses were superimposable after accounting for the voltage shift. Inactivation time constants as functions of potential for the Cs(+) current and I(Ca(TTX)) also superimposed after voltage shifting, as did the inactivation curves. Neither of the proposed conditions for conversion of I(Na) into I(Ca(TTX)) channels is required to demonstrate I(Ca(TTX)). Moreover, we find that cardiac Na(+) (H1) channels expressed heterologously in HEK 293 cells are not converted to I(Ca(TTX)) channels by Na(+)-free, Ca(2+)-containing bathing media. The gating properties of the Na(+) current through H1 and those of Ca(2+) current through H1 are identical. All observations are consistent with two non-interconvertable Na(+) channel populations: a larger that expresses little Ca(2+) permeability and a smaller that is appreciably Ca(2+)-permeable.

Full Text

The Full Text of this article is available as a PDF (226.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aggarwal R., Shorofsky S. R., Goldman L., Balke C. W. Tetrodotoxin-blockable calcium currents in rat ventricular myocytes; a third type of cardiac cell sodium current. J Physiol. 1997 Dec 1;505(Pt 2):353–369. doi: 10.1111/j.1469-7793.1997.353bb.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Akaike N., Takahashi K. Tetrodotoxin-sensitive calcium-conducting channels in the rat hippocampal CA1 region. J Physiol. 1992 May;450:529–546. doi: 10.1113/jphysiol.1992.sp019141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Balke C. W., Wier W. G. Modulation of L-type calcium channels by sodium ions. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4417–4421. doi: 10.1073/pnas.89.10.4417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brown A. M., Lee K. S., Powell T. Sodium current in single rat heart muscle cells. J Physiol. 1981 Sep;318:479–500. doi: 10.1113/jphysiol.1981.sp013879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cachelin A. B., De Peyer J. E., Kokubun S., Reuter H. Sodium channels in cultured cardiac cells. J Physiol. 1983 Jul;340:389–401. doi: 10.1113/jphysiol.1983.sp014768. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chandler W. K., Meves H. Voltage clamp experiments on internally perfused giant axons. J Physiol. 1965 Oct;180(4):788–820. doi: 10.1113/jphysiol.1965.sp007732. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chen S., Hartmann H. A., Kirsch G. E. Cysteine mapping in the ion selectivity and toxin binding region of the cardiac Na+ channel pore. J Membr Biol. 1997 Jan 1;155(1):11–25. doi: 10.1007/s002329900154. [DOI] [PubMed] [Google Scholar]
  8. Cole W. C., Chartier D., Martin M., Leblanc N. Ca2+ permeation through Na+ channels in guinea pig ventricular myocytes. Am J Physiol. 1997 Jul;273(1 Pt 2):H128–H137. doi: 10.1152/ajpheart.1997.273.1.H128. [DOI] [PubMed] [Google Scholar]
  9. Eick R. T., Yeh J., Matsuki N. Two types of voltage dependent na channels suggested by differential sensitivity of single channels to tetrodotoxin. Biophys J. 1984 Jan;45(1):70–73. doi: 10.1016/S0006-3495(84)84113-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Guatimosim S., Sobie E. A., dos Santos Cruz J., Martin L. A., Lederer W. J. Molecular identification of a TTX-sensitive Ca(2+) current. Am J Physiol Cell Physiol. 2001 May;280(5):C1327–C1339. doi: 10.1152/ajpcell.2001.280.5.C1327. [DOI] [PubMed] [Google Scholar]
  11. Heubach J. F., Köhler A., Wettwer E., Ravens U. T-Type and tetrodotoxin-sensitive Ca(2+) currents coexist in guinea pig ventricular myocytes and are both blocked by mibefradil. Circ Res. 2000 Mar 31;86(6):628–635. doi: 10.1161/01.res.86.6.628. [DOI] [PubMed] [Google Scholar]
  12. Ju Y. K., Saint D. A., Gage P. W. Inactivation-resistant channels underlying the persistent sodium current in rat ventricular myocytes. Proc Biol Sci. 1994 May 23;256(1346):163–168. doi: 10.1098/rspb.1994.0065. [DOI] [PubMed] [Google Scholar]
  13. Kambouris N. G., Nuss H. B., Johns D. C., Marbán E., Tomaselli G. F., Balser J. R. A revised view of cardiac sodium channel "blockade" in the long-QT syndrome. J Clin Invest. 2000 Apr;105(8):1133–1140. doi: 10.1172/JCI9212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kunze D. L., Lacerda A. E., Wilson D. L., Brown A. M. Cardiac Na currents and the inactivating, reopening, and waiting properties of single cardiac Na channels. J Gen Physiol. 1985 Nov;86(5):691–719. doi: 10.1085/jgp.86.5.691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kurata Y., Sato R., Hisatome I., Imanishi S. Mechanisms of cation permeation in cardiac sodium channel: description by dynamic pore model. Biophys J. 1999 Oct;77(4):1885–1904. doi: 10.1016/S0006-3495(99)77031-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lemaire S., Piot C., Seguin J., Nargeot J., Richard S. Tetrodotoxin-sensitive Ca2+ and Ba2+ currents in human atrial cells. Receptors Channels. 1995;3(2):71–81. [PubMed] [Google Scholar]
  17. Meves H., Vogel W. Calcium inward currents in internally perfused giant axons. J Physiol. 1973 Nov;235(1):225–265. doi: 10.1113/jphysiol.1973.sp010386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mitchell M. R., Powell T., Terrar D. A., Twist V. W. Characteristics of the second inward current in cells isolated from rat ventricular muscle. Proc R Soc Lond B Biol Sci. 1983 Oct 22;219(1217):447–469. doi: 10.1098/rspb.1983.0084. [DOI] [PubMed] [Google Scholar]
  19. Santana L. F., Gómez A. M., Lederer W. J. Ca2+ flux through promiscuous cardiac Na+ channels: slip-mode conductance. Science. 1998 Feb 13;279(5353):1027–1033. doi: 10.1126/science.279.5353.1027. [DOI] [PubMed] [Google Scholar]
  20. Scanley B. E., Fozzard H. A. Low conductance sodium channels in canine cardiac Purkinje cells. Biophys J. 1987 Sep;52(3):489–495. doi: 10.1016/S0006-3495(87)83237-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sheets M. F., Scanley B. E., Hanck D. A., Makielski J. C., Fozzard H. A. Open sodium channel properties of single canine cardiac Purkinje cells. Biophys J. 1987 Jul;52(1):13–22. doi: 10.1016/S0006-3495(87)83183-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Townsend C., Hartmann H. A., Horn R. Anomalous effect of permeant ion concentration on peak open probability of cardiac Na+ channels. J Gen Physiol. 1997 Jul;110(1):11–21. doi: 10.1085/jgp.110.1.11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Yamamoto D., Yeh J. Z., Narahashi T. Voltage-dependent calcium block of normal and tetramethrin-modified single sodium channels. Biophys J. 1984 Jan;45(1):337–344. doi: 10.1016/S0006-3495(84)84159-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Zilberter YuI, Starmer C. F., Starobin J., Grant A. O. Late Na channels in cardiac cells: the physiological role of background Na channels. Biophys J. 1994 Jul;67(1):153–160. doi: 10.1016/S0006-3495(94)80464-3. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES