Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Apr;82(4):2016–2031. doi: 10.1016/S0006-3495(02)75550-1

Hemichannel and junctional properties of connexin 50.

Derek L Beahm 1, James E Hall 1
PMCID: PMC1301997  PMID: 11916859

Abstract

Lens fiber connexins, cx50 and cx46 (alpha3 and alpha8), belong to a small subset of connexins that can form functional hemichannels in nonjunctional membranes. Knockout of either cx50 or cx46 results in a cataract, so the properties of both connexins are likely essential for proper physiological functioning of the lens. Although portions of the sequences of these two connexins are nearly identical, their hemichannel properties are quite different. Cx50 hemichannels are much more sensitive to extracellular acidification than cx46 hemichannels and differ from cx46 hemichannels both in steady-state and kinetic properties. Comparison of the two branches of the cx50 hemichannel G-V curve with the junctional G-V curve suggests that cx50 gap junctions gate with positive relative polarity. The histidine-modifying reagent, diethyl pyrocarbonate, reversibly blocks cx50 hemichannel currents but not cx46 hemichannel currents. Because cx46 and cx50 have very similar amino acid sequences, one might expect that replacing the two histidines unique to the third transmembrane region of cx50 with the corresponding cx46 residues would produce mutants more closely resembling cx46. In fact this does not happen. Instead the mutant cx50H161N does not form detectable hemichannels but forms gap junctions indistinguishable from wild type. Cx50H176Q is oocyte lethal, and the double mutant, cx50H61N/H176Q, neither forms hemichannels nor kills oocytes.

Full Text

The Full Text of this article is available as a PDF (514.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barrio L. C., Suchyna T., Bargiello T., Xu L. X., Roginski R. S., Bennett M. V., Nicholson B. J. Gap junctions formed by connexins 26 and 32 alone and in combination are differently affected by applied voltage. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8410–8414. doi: 10.1073/pnas.88.19.8410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bassnett S., Duncan G. The influence of pH on membrane conductance and intercellular resistance in the rat lens. J Physiol. 1988 Apr;398:507–521. doi: 10.1113/jphysiol.1988.sp017054. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bruzzone R., Haefliger J. A., Gimlich R. L., Paul D. L. Connexin40, a component of gap junctions in vascular endothelium, is restricted in its ability to interact with other connexins. Mol Biol Cell. 1993 Jan;4(1):7–20. doi: 10.1091/mbc.4.1.7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bukauskas F. F., Jordan K., Bukauskiene A., Bennett M. V., Lampe P. D., Laird D. W., Verselis V. K. Clustering of connexin 43-enhanced green fluorescent protein gap junction channels and functional coupling in living cells. Proc Natl Acad Sci U S A. 2000 Mar 14;97(6):2556–2561. doi: 10.1073/pnas.050588497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dahl G., Nonner W., Werner R. Attempts to define functional domains of gap junction proteins with synthetic peptides. Biophys J. 1994 Nov;67(5):1816–1822. doi: 10.1016/S0006-3495(94)80663-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. DeVries S. H., Schwartz E. A. Hemi-gap-junction channels in solitary horizontal cells of the catfish retina. J Physiol. 1992 Jan;445:201–230. doi: 10.1113/jphysiol.1992.sp018920. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dunham B., Liu S., Taffet S., Trabka-Janik E., Delmar M., Petryshyn R., Zheng S., Perzova R., Vallano M. L. Immunolocalization and expression of functional and nonfunctional cell-to-cell channels from wild-type and mutant rat heart connexin43 cDNA. Circ Res. 1992 Jun;70(6):1233–1243. doi: 10.1161/01.res.70.6.1233. [DOI] [PubMed] [Google Scholar]
  8. Ebihara L., Berthoud V. M., Beyer E. C. Distinct behavior of connexin56 and connexin46 gap junctional channels can be predicted from the behavior of their hemi-gap-junctional channels. Biophys J. 1995 May;68(5):1796–1803. doi: 10.1016/S0006-3495(95)80356-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ebihara L., Steiner E. Properties of a nonjunctional current expressed from a rat connexin46 cDNA in Xenopus oocytes. J Gen Physiol. 1993 Jul;102(1):59–74. doi: 10.1085/jgp.102.1.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Eckert R., Donaldson P., Goldie K., Kistler J. A distinct membrane current in rat lens fiber cells isolated under calcium-free conditions. Invest Ophthalmol Vis Sci. 1998 Jun;39(7):1280–1285. [PubMed] [Google Scholar]
  11. Ek J. F., Delmar M., Perzova R., Taffet S. M. Role of histidine 95 on pH gating of the cardiac gap junction protein connexin43. Circ Res. 1994 Jun;74(6):1058–1064. doi: 10.1161/01.res.74.6.1058. [DOI] [PubMed] [Google Scholar]
  12. Gong X., Li E., Klier G., Huang Q., Wu Y., Lei H., Kumar N. M., Horwitz J., Gilula N. B. Disruption of alpha3 connexin gene leads to proteolysis and cataractogenesis in mice. Cell. 1997 Dec 12;91(6):833–843. doi: 10.1016/s0092-8674(00)80471-7. [DOI] [PubMed] [Google Scholar]
  13. Goodenough D. A., Paul D. L., Jesaitis L. Topological distribution of two connexin32 antigenic sites in intact and split rodent hepatocyte gap junctions. J Cell Biol. 1988 Nov;107(5):1817–1824. doi: 10.1083/jcb.107.5.1817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gupta V. K., Berthoud V. M., Atal N., Jarillo J. A., Barrio L. C., Beyer E. C. Bovine connexin44, a lens gap junction protein: molecular cloning, immunologic characterization, and functional expression. Invest Ophthalmol Vis Sci. 1994 Sep;35(10):3747–3758. [PubMed] [Google Scholar]
  15. Hennemann H., Suchyna T., Lichtenberg-Fraté H., Jungbluth S., Dahl E., Schwarz J., Nicholson B. J., Willecke K. Molecular cloning and functional expression of mouse connexin40, a second gap junction gene preferentially expressed in lung. J Cell Biol. 1992 Jun;117(6):1299–1310. doi: 10.1083/jcb.117.6.1299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jedamzik B., Marten I., Ngezahayo A., Ernst A., Kolb H. A. Regulation of lens rCx46-formed hemichannels by activation of protein kinase C, external Ca(2+) and protons. J Membr Biol. 2000 Jan 1;173(1):39–46. doi: 10.1007/s002320001005. [DOI] [PubMed] [Google Scholar]
  17. Laird D. W., Revel J. P. Biochemical and immunochemical analysis of the arrangement of connexin43 in rat heart gap junction membranes. J Cell Sci. 1990 Sep;97(Pt 1):109–117. doi: 10.1242/jcs.97.1.109. [DOI] [PubMed] [Google Scholar]
  18. Liu S., Taffet S., Stoner L., Delmar M., Vallano M. L., Jalife J. A structural basis for the unequal sensitivity of the major cardiac and liver gap junctions to intracellular acidification: the carboxyl tail length. Biophys J. 1993 May;64(5):1422–1433. doi: 10.1016/S0006-3495(93)81508-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mathias R. T., Rae J. L., Baldo G. J. Physiological properties of the normal lens. Physiol Rev. 1997 Jan;77(1):21–50. doi: 10.1152/physrev.1997.77.1.21. [DOI] [PubMed] [Google Scholar]
  20. Mathias R. T., Rae J. L., Ebihara L., McCarthy R. T. The localization of transport properties in the frog lens. Biophys J. 1985 Sep;48(3):423–434. doi: 10.1016/S0006-3495(85)83798-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mathias R. T., Rae J. L., Eisenberg R. S. Electrical properties of structural components of the crystalline lens. Biophys J. 1979 Jan;25(1):181–201. doi: 10.1016/S0006-3495(79)85284-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mathias R. T., Rae J. L. Steady state voltages in the frog lens. Curr Eye Res. 1985 Apr;4(4):421–430. doi: 10.3109/02713688509025156. [DOI] [PubMed] [Google Scholar]
  23. Mathias R. T., Riquelme G., Rae J. L. Cell to cell communication and pH in the frog lens. J Gen Physiol. 1991 Dec;98(6):1085–1103. doi: 10.1085/jgp.98.6.1085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Miles E. W. Modification of histidyl residues in proteins by diethylpyrocarbonate. Methods Enzymol. 1977;47:431–442. doi: 10.1016/0076-6879(77)47043-5. [DOI] [PubMed] [Google Scholar]
  25. Milks L. C., Kumar N. M., Houghten R., Unwin N., Gilula N. B. Topology of the 32-kd liver gap junction protein determined by site-directed antibody localizations. EMBO J. 1988 Oct;7(10):2967–2975. doi: 10.1002/j.1460-2075.1988.tb03159.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Morley G. E., Taffet S. M., Delmar M. Intramolecular interactions mediate pH regulation of connexin43 channels. Biophys J. 1996 Mar;70(3):1294–1302. doi: 10.1016/S0006-3495(96)79686-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Németh-Cahalan K. L., Hall J. E. pH and calcium regulate the water permeability of aquaporin 0. J Biol Chem. 2000 Mar 10;275(10):6777–6782. doi: 10.1074/jbc.275.10.6777. [DOI] [PubMed] [Google Scholar]
  28. Padan E., Patel L., Kaback H. R. Effect of diethylpyrocarbonate on lactose/proton symport in Escherichia coli membrane vesicles. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6221–6225. doi: 10.1073/pnas.76.12.6221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Pasquale L. R., Mathias R. T., Austin L. R., Brink P. R., Ciunga M. Electrostatic properties of fiber cell membranes from the frog lens. Biophys J. 1990 Oct;58(4):939–945. doi: 10.1016/S0006-3495(90)82438-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Paul D. L., Ebihara L., Takemoto L. J., Swenson K. I., Goodenough D. A. Connexin46, a novel lens gap junction protein, induces voltage-gated currents in nonjunctional plasma membrane of Xenopus oocytes. J Cell Biol. 1991 Nov;115(4):1077–1089. doi: 10.1083/jcb.115.4.1077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Pfahnl A., Dahl G. Gating of cx46 gap junction hemichannels by calcium and voltage. Pflugers Arch. 1999 Feb;437(3):345–353. doi: 10.1007/s004240050788. [DOI] [PubMed] [Google Scholar]
  32. Pfahnl A., Dahl G. Localization of a voltage gate in connexin46 gap junction hemichannels. Biophys J. 1998 Nov;75(5):2323–2331. doi: 10.1016/S0006-3495(98)77676-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Rai S. S., Wolff J. Localization of critical histidyl residues required for vinblastine-induced tubulin polymerization and for microtubule assembly. J Biol Chem. 1998 Nov 20;273(47):31131–31137. doi: 10.1074/jbc.273.47.31131. [DOI] [PubMed] [Google Scholar]
  34. Shoshan-Barmatz V., Weil S. Diethyl pyrocarbonate modification of the ryanodine receptor/Ca2+ channel from skeletal muscle. Biochem J. 1994 Apr 1;299(Pt 1):177–181. doi: 10.1042/bj2990177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Spires S., Begenisich T. Modification of potassium channel kinetics by histidine-specific reagents. J Gen Physiol. 1990 Oct;96(4):757–775. doi: 10.1085/jgp.96.4.757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Trexler E. B., Bennett M. V., Bargiello T. A., Verselis V. K. Voltage gating and permeation in a gap junction hemichannel. Proc Natl Acad Sci U S A. 1996 Jun 11;93(12):5836–5841. doi: 10.1073/pnas.93.12.5836. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. White T. W., Bruzzone R., Goodenough D. A., Paul D. L. Voltage gating of connexins. Nature. 1994 Sep 15;371(6494):208–209. doi: 10.1038/371208a0. [DOI] [PubMed] [Google Scholar]
  38. White T. W., Bruzzone R., Wolfram S., Paul D. L., Goodenough D. A. Selective interactions among the multiple connexin proteins expressed in the vertebrate lens: the second extracellular domain is a determinant of compatibility between connexins. J Cell Biol. 1994 May;125(4):879–892. doi: 10.1083/jcb.125.4.879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. White T. W., Goodenough D. A., Paul D. L. Targeted ablation of connexin50 in mice results in microphthalmia and zonular pulverulent cataracts. J Cell Biol. 1998 Nov 2;143(3):815–825. doi: 10.1083/jcb.143.3.815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. White T. W., Paul D. L., Goodenough D. A., Bruzzone R. Functional analysis of selective interactions among rodent connexins. Mol Biol Cell. 1995 Apr;6(4):459–470. doi: 10.1091/mbc.6.4.459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Wilders R., Jongsma H. J. Limitations of the dual voltage clamp method in assaying conductance and kinetics of gap junction channels. Biophys J. 1992 Oct;63(4):942–953. doi: 10.1016/S0006-3495(92)81664-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Yeager M., Gilula N. B. Membrane topology and quaternary structure of cardiac gap junction ion channels. J Mol Biol. 1992 Feb 20;223(4):929–948. doi: 10.1016/0022-2836(92)90253-g. [DOI] [PubMed] [Google Scholar]
  43. Zampighi G. A., Loo D. D., Kreman M., Eskandari S., Wright E. M. Functional and morphological correlates of connexin50 expressed in Xenopus laevis oocytes. J Gen Physiol. 1999 Apr;113(4):507–524. doi: 10.1085/jgp.113.4.507. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES