Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2002 Sep;83(3):1380–1394. doi: 10.1016/S0006-3495(02)73909-X

Calculation of forces at focal adhesions from elastic substrate data: the effect of localized force and the need for regularization.

U S Schwarz 1, N Q Balaban 1, D Riveline 1, A Bershadsky 1, B Geiger 1, S A Safran 1
PMCID: PMC1302237  PMID: 12202364

Abstract

Forces exerted by stationary cells have been investigated on the level of single focal adhesions by combining elastic substrates, fluorescence labeling of focal adhesions, and the assumption of localized force when solving the inverse problem of linear elasticity theory. Data simulation confirms that the inverse problem is ill-posed in the presence of noise and shows that in general a regularization scheme is needed to arrive at a reliable force estimate. Spatial and force resolution are restricted by the smoothing action of the elastic kernel, depend on the details of the force and displacement patterns, and are estimated by data simulation. Corrections arising from the spatial distribution of force and from finite substrate size are treated in the framework of a force multipolar expansion. Our method is computationally cheap and could be used to study mechanical activity of cells in real time.

Full Text

The Full Text of this article is available as a PDF (467.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abercrombie M., Dunn G. A. Adhesions of fibroblasts to substratum during contact inhibition observed by interference reflection microscopy. Exp Cell Res. 1975 Apr;92(1):57–62. doi: 10.1016/0014-4827(75)90636-9. [DOI] [PubMed] [Google Scholar]
  2. Balaban N. Q., Schwarz U. S., Riveline D., Goichberg P., Tzur G., Sabanay I., Mahalu D., Safran S., Bershadsky A., Addadi L. Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat Cell Biol. 2001 May;3(5):466–472. doi: 10.1038/35074532. [DOI] [PubMed] [Google Scholar]
  3. Beningo K. A., Dembo M., Kaverina I., Small J. V., Wang Y. L. Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts. J Cell Biol. 2001 May 14;153(4):881–888. doi: 10.1083/jcb.153.4.881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Beningo Karen A., Wang Yu-Li. Flexible substrata for the detection of cellular traction forces. Trends Cell Biol. 2002 Feb;12(2):79–84. doi: 10.1016/s0962-8924(01)02205-x. [DOI] [PubMed] [Google Scholar]
  5. Burridge K., Chrzanowska-Wodnicka M. Focal adhesions, contractility, and signaling. Annu Rev Cell Dev Biol. 1996;12:463–518. doi: 10.1146/annurev.cellbio.12.1.463. [DOI] [PubMed] [Google Scholar]
  6. Burton K., Park J. H., Taylor D. L. Keratocytes generate traction forces in two phases. Mol Biol Cell. 1999 Nov;10(11):3745–3769. doi: 10.1091/mbc.10.11.3745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Burton K., Taylor D. L. Traction forces of cytokinesis measured with optically modified elastic substrata. Nature. 1997 Jan 30;385(6615):450–454. doi: 10.1038/385450a0. [DOI] [PubMed] [Google Scholar]
  8. Butler James P., Tolić-Nørrelykke Iva Marija, Fabry Ben, Fredberg Jeffrey J. Traction fields, moments, and strain energy that cells exert on their surroundings. Am J Physiol Cell Physiol. 2002 Mar;282(3):C595–C605. doi: 10.1152/ajpcell.00270.2001. [DOI] [PubMed] [Google Scholar]
  9. Chen W. T., Singer S. J. Immunoelectron microscopic studies of the sites of cell-substratum and cell-cell contacts in cultured fibroblasts. J Cell Biol. 1982 Oct;95(1):205–222. doi: 10.1083/jcb.95.1.205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chicurel M. E., Chen C. S., Ingber D. E. Cellular control lies in the balance of forces. Curr Opin Cell Biol. 1998 Apr;10(2):232–239. doi: 10.1016/s0955-0674(98)80145-2. [DOI] [PubMed] [Google Scholar]
  11. Choquet D., Felsenfeld D. P., Sheetz M. P. Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages. Cell. 1997 Jan 10;88(1):39–48. doi: 10.1016/s0092-8674(00)81856-5. [DOI] [PubMed] [Google Scholar]
  12. Cukierman E., Pankov R., Stevens D. R., Yamada K. M. Taking cell-matrix adhesions to the third dimension. Science. 2001 Nov 23;294(5547):1708–1712. doi: 10.1126/science.1064829. [DOI] [PubMed] [Google Scholar]
  13. Dembo M., Oliver T., Ishihara A., Jacobson K. Imaging the traction stresses exerted by locomoting cells with the elastic substratum method. Biophys J. 1996 Apr;70(4):2008–2022. doi: 10.1016/S0006-3495(96)79767-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Dembo M., Wang Y. L. Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys J. 1999 Apr;76(4):2307–2316. doi: 10.1016/S0006-3495(99)77386-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Finer J. T., Simmons R. M., Spudich J. A. Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature. 1994 Mar 10;368(6467):113–119. doi: 10.1038/368113a0. [DOI] [PubMed] [Google Scholar]
  16. Galbraith C. G., Sheetz M. P. A micromachined device provides a new bend on fibroblast traction forces. Proc Natl Acad Sci U S A. 1997 Aug 19;94(17):9114–9118. doi: 10.1073/pnas.94.17.9114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Galbraith C. G., Sheetz M. P. Forces on adhesive contacts affect cell function. Curr Opin Cell Biol. 1998 Oct;10(5):566–571. doi: 10.1016/s0955-0674(98)80030-6. [DOI] [PubMed] [Google Scholar]
  18. Geiger B., Bershadsky A. Assembly and mechanosensory function of focal contacts. Curr Opin Cell Biol. 2001 Oct;13(5):584–592. doi: 10.1016/s0955-0674(00)00255-6. [DOI] [PubMed] [Google Scholar]
  19. Geiger B., Bershadsky A., Pankov R., Yamada K. M. Transmembrane crosstalk between the extracellular matrix--cytoskeleton crosstalk. Nat Rev Mol Cell Biol. 2001 Nov;2(11):793–805. doi: 10.1038/35099066. [DOI] [PubMed] [Google Scholar]
  20. Harris A. K., Stopak D., Wild P. Fibroblast traction as a mechanism for collagen morphogenesis. Nature. 1981 Mar 19;290(5803):249–251. doi: 10.1038/290249a0. [DOI] [PubMed] [Google Scholar]
  21. Harris A. K., Wild P., Stopak D. Silicone rubber substrata: a new wrinkle in the study of cell locomotion. Science. 1980 Apr 11;208(4440):177–179. doi: 10.1126/science.6987736. [DOI] [PubMed] [Google Scholar]
  22. Kraynov V. S., Chamberlain C., Bokoch G. M., Schwartz M. A., Slabaugh S., Hahn K. M. Localized Rac activation dynamics visualized in living cells. Science. 2000 Oct 13;290(5490):333–337. doi: 10.1126/science.290.5490.333. [DOI] [PubMed] [Google Scholar]
  23. Lee J., Leonard M., Oliver T., Ishihara A., Jacobson K. Traction forces generated by locomoting keratocytes. J Cell Biol. 1994 Dec;127(6 Pt 2):1957–1964. doi: 10.1083/jcb.127.6.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lo C. M., Wang H. B., Dembo M., Wang Y. L. Cell movement is guided by the rigidity of the substrate. Biophys J. 2000 Jul;79(1):144–152. doi: 10.1016/S0006-3495(00)76279-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Merkel R., Nassoy P., Leung A., Ritchie K., Evans E. Energy landscapes of receptor-ligand bonds explored with dynamic force spectroscopy. Nature. 1999 Jan 7;397(6714):50–53. doi: 10.1038/16219. [DOI] [PubMed] [Google Scholar]
  26. Oliver T., Dembo M., Jacobson K. Separation of propulsive and adhesive traction stresses in locomoting keratocytes. J Cell Biol. 1999 May 3;145(3):589–604. doi: 10.1083/jcb.145.3.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pelham R. J., Jr, Wang Y. l. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):13661–13665. doi: 10.1073/pnas.94.25.13661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Radmacher M., Fritz M., Kacher C. M., Cleveland J. P., Hansma P. K. Measuring the viscoelastic properties of human platelets with the atomic force microscope. Biophys J. 1996 Jan;70(1):556–567. doi: 10.1016/S0006-3495(96)79602-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Ren X. D., Kiosses W. B., Schwartz M. A. Regulation of the small GTP-binding protein Rho by cell adhesion and the cytoskeleton. EMBO J. 1999 Feb 1;18(3):578–585. doi: 10.1093/emboj/18.3.578. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rief M., Gautel M., Oesterhelt F., Fernandez J. M., Gaub H. E. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science. 1997 May 16;276(5315):1109–1112. doi: 10.1126/science.276.5315.1109. [DOI] [PubMed] [Google Scholar]
  31. Riveline D., Zamir E., Balaban N. Q., Schwarz U. S., Ishizaki T., Narumiya S., Kam Z., Geiger B., Bershadsky A. D. Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J Cell Biol. 2001 Jun 11;153(6):1175–1186. doi: 10.1083/jcb.153.6.1175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Shaub A. Unravelling the extracellular matrix. Nat Cell Biol. 1999 Nov;1(7):E173–E175. doi: 10.1038/15608. [DOI] [PubMed] [Google Scholar]
  33. Smilenov L. B., Mikhailov A., Pelham R. J., Marcantonio E. E., Gundersen G. G. Focal adhesion motility revealed in stationary fibroblasts. Science. 1999 Nov 5;286(5442):1172–1174. doi: 10.1126/science.286.5442.1172. [DOI] [PubMed] [Google Scholar]
  34. Thoumine O., Ott A., Louvard D. Critical centrifugal forces induce adhesion rupture or structural reorganization in cultured cells. Cell Motil Cytoskeleton. 1996;33(4):276–287. doi: 10.1002/(SICI)1097-0169(1996)33:4<276::AID-CM4>3.0.CO;2-7. [DOI] [PubMed] [Google Scholar]
  35. Zamir E., Katz B. Z., Aota S., Yamada K. M., Geiger B., Kam Z. Molecular diversity of cell-matrix adhesions. J Cell Sci. 1999 Jun;112(Pt 11):1655–1669. doi: 10.1242/jcs.112.11.1655. [DOI] [PubMed] [Google Scholar]
  36. Zamir E., Katz M., Posen Y., Erez N., Yamada K. M., Katz B. Z., Lin S., Lin D. C., Bershadsky A., Kam Z. Dynamics and segregation of cell-matrix adhesions in cultured fibroblasts. Nat Cell Biol. 2000 Apr;2(4):191–196. doi: 10.1038/35008607. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES