Abstract
We probed the kinetics with which cholesterol moves across the human red cell bilayer and exits the membrane using methyl-beta-cyclodextrin as an acceptor. The fractional rate of cholesterol transfer (% s(-1)) was unprecedented, the half-time at 37 degrees C being ~1 s. The kinetics observed under typical conditions were independent of donor concentration and directly proportional to acceptor concentration. The rate of exit of membrane cholesterol fell hyperbolically to zero with increasing dilution. The energy of activation for cholesterol transfer was the same at high and low dilution; namely, 27-28 Kcal/mol. This behavior is not consistent with an exit pathway involving desorption followed by aqueous diffusion to acceptors nor with a simple one-step collision mechanism. Rather, it is that predicted for an activation-collision mechanism in which the reversible partial projection of cholesterol molecules out of the bilayer precedes their collisional capture by cyclodextrin. Because the entire membrane pool was transferred in a single first-order process under all conditions, we infer that the transbilayer diffusion (flip-flop) of cholesterol must have proceeded faster than its exit, i.e., with a half-time of <1 s at 37 degrees C.
Full Text
The Full Text of this article is available as a PDF (156.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Backer J. M., Dawidowicz E. A. Mechanism of cholesterol exchange between phospholipid vesicles. Biochemistry. 1981 Jun 23;20(13):3805–3810. doi: 10.1021/bi00516a021. [DOI] [PubMed] [Google Scholar]
- Bar L. K., Barenholz Y., Thompson T. E. Fraction of cholesterol undergoing spontaneous exchange between small unilamellar phosphatidylcholine vesicles. Biochemistry. 1986 Oct 21;25(21):6701–6705. doi: 10.1021/bi00369a056. [DOI] [PubMed] [Google Scholar]
- Barenholz Y. Cholesterol and other membrane active sterols: from membrane evolution to "rafts". Prog Lipid Res. 2002 Jan;41(1):1–5. doi: 10.1016/s0163-7827(01)00016-9. [DOI] [PubMed] [Google Scholar]
- Bergmann W. L., Dressler V., Haest C. W., Deuticke B. Reorientation rates and asymmetry of distribution of lysophospholipids between the inner and outer leaflet of the erythrocyte membrane. Biochim Biophys Acta. 1984 May 30;772(3):328–336. doi: 10.1016/0005-2736(84)90150-0. [DOI] [PubMed] [Google Scholar]
- Bojesen I. N., Bojesen E. Oleic acid binding and transport capacity of human red cell membrane. Acta Physiol Scand. 1996 Apr;156(4):501–516. doi: 10.1046/j.1365-201X.1996.456173000.x. [DOI] [PubMed] [Google Scholar]
- Brasaemle D. L., Robertson A. D., Attie A. D. Transbilayer movement of cholesterol in the human erythrocyte membrane. J Lipid Res. 1988 Apr;29(4):481–489. [PubMed] [Google Scholar]
- Brown R. E. Spontaneous lipid transfer between organized lipid assemblies. Biochim Biophys Acta. 1992 Dec 11;1113(3-4):375–389. doi: 10.1016/0304-4157(92)90007-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Butko P., Hapala I., Scallen T. J., Schroeder F. Acidic phospholipids strikingly potentiate sterol carrier protein 2 mediated intermembrane sterol transfer. Biochemistry. 1990 May 1;29(17):4070–4077. doi: 10.1021/bi00469a007. [DOI] [PubMed] [Google Scholar]
- Clejan S., Bittman R. Distribution and movement of sterols with different side chain structures between the two leaflets of the membrane bilayer of mycoplasma cells. J Biol Chem. 1984 Jan 10;259(1):449–455. [PubMed] [Google Scholar]
- Davidson W. S., Gillotte K. L., Lund-Katz S., Johnson W. J., Rothblat G. H., Phillips M. C. The effect of high density lipoprotein phospholipid acyl chain composition on the efflux of cellular free cholesterol. J Biol Chem. 1995 Mar 17;270(11):5882–5890. doi: 10.1074/jbc.270.11.5882. [DOI] [PubMed] [Google Scholar]
- Davidson W. S., Rodrigueza W. V., Lund-Katz S., Johnson W. J., Rothblat G. H., Phillips M. C. Effects of acceptor particle size on the efflux of cellular free cholesterol. J Biol Chem. 1995 Jul 21;270(29):17106–17113. doi: 10.1074/jbc.270.29.17106. [DOI] [PubMed] [Google Scholar]
- Ferrell J. E., Jr, Lee K. J., Huestis W. H. Lipid transfer between phosphatidylcholine vesicles and human erythrocytes: exponential decrease in rate with increasing acyl chain length. Biochemistry. 1985 Jun 4;24(12):2857–2864. doi: 10.1021/bi00333a007. [DOI] [PubMed] [Google Scholar]
- Fisher K. A. Analysis of membrane halves: cholesterol. Proc Natl Acad Sci U S A. 1976 Jan;73(1):173–177. doi: 10.1073/pnas.73.1.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gottlieb M. H. Rates of cholesterol exchange between human erythrocytes and plasma lipoproteins. Biochim Biophys Acta. 1980 Aug 4;600(2):530–541. doi: 10.1016/0005-2736(80)90454-x. [DOI] [PubMed] [Google Scholar]
- Hamilton J. A., Johnson R. A., Corkey B., Kamp F. Fatty acid transport: the diffusion mechanism in model and biological membranes. J Mol Neurosci. 2001 Apr-Jun;16(2-3):99–157. doi: 10.1385/JMN:16:2-3:99. [DOI] [PubMed] [Google Scholar]
- Hao Mingming, Lin Sharron X., Karylowski Ola J., Wüstner Daniel, McGraw Timothy E., Maxfield Frederick R. Vesicular and non-vesicular sterol transport in living cells. The endocytic recycling compartment is a major sterol storage organelle. J Biol Chem. 2001 Oct 26;277(1):609–617. doi: 10.1074/jbc.M108861200. [DOI] [PubMed] [Google Scholar]
- Haynes M. P., Phillips M. C., Rothblat G. H. Efflux of cholesterol from different cellular pools. Biochemistry. 2000 Apr 18;39(15):4508–4517. doi: 10.1021/bi992125q. [DOI] [PubMed] [Google Scholar]
- Jonas A., Maine G. T. Kinetics and mechanism of phosphatidylcholine and cholesterol exchange between single bilayer vesicles and bovine serum high-density lipoprotein. Biochemistry. 1979 May 1;18(9):1722–1728. doi: 10.1021/bi00576a014. [DOI] [PubMed] [Google Scholar]
- Jones J. D., Thompson T. E. Mechanism of spontaneous, concentration-dependent phospholipid transfer between bilayers. Biochemistry. 1990 Feb 13;29(6):1593–1600. doi: 10.1021/bi00458a034. [DOI] [PubMed] [Google Scholar]
- Jones J. D., Thompson T. E. Spontaneous phosphatidylcholine transfer by collision between vesicles at high lipid concentration. Biochemistry. 1989 Jan 10;28(1):129–134. doi: 10.1021/bi00427a019. [DOI] [PubMed] [Google Scholar]
- Kan C. C., Yan J., Bittman R. Rates of spontaneous exchange of synthetic radiolabeled sterols between lipid vesicles. Biochemistry. 1992 Feb 18;31(6):1866–1874. doi: 10.1021/bi00121a040. [DOI] [PubMed] [Google Scholar]
- Klein U., Gimpl G., Fahrenholz F. Alteration of the myometrial plasma membrane cholesterol content with beta-cyclodextrin modulates the binding affinity of the oxytocin receptor. Biochemistry. 1995 Oct 24;34(42):13784–13793. doi: 10.1021/bi00042a009. [DOI] [PubMed] [Google Scholar]
- Kleinfeld A. M., Chu P., Romero C. Transport of long-chain native fatty acids across lipid bilayer membranes indicates that transbilayer flip-flop is rate limiting. Biochemistry. 1997 Nov 18;36(46):14146–14158. doi: 10.1021/bi971440e. [DOI] [PubMed] [Google Scholar]
- Kuzelová K., Brault D. Kinetic and equilibrium studies of porphyrin interactions with unilamellar lipidic vesicles. Biochemistry. 1994 Aug 16;33(32):9447–9459. doi: 10.1021/bi00198a010. [DOI] [PubMed] [Google Scholar]
- Lange Y. Disposition of intracellular cholesterol in human fibroblasts. J Lipid Res. 1991 Feb;32(2):329–339. [PubMed] [Google Scholar]
- Lange Y., Dolde J., Steck T. L. The rate of transmembrane movement of cholesterol in the human erythrocyte. J Biol Chem. 1981 Jun 10;256(11):5321–5323. [PubMed] [Google Scholar]
- Lange Y., Molinaro A. L., Chauncey T. R., Steck T. L. On the mechanism of transfer of cholesterol between human erythrocytes and plasma. J Biol Chem. 1983 Jun 10;258(11):6920–6926. [PubMed] [Google Scholar]
- Lange Y., Slayton J. M. Interaction of cholesterol and lysophosphatidylcholine in determining red cell shape. J Lipid Res. 1982 Nov;23(8):1121–1127. [PubMed] [Google Scholar]
- Leventis R., Silvius J. R. Use of cyclodextrins to monitor transbilayer movement and differential lipid affinities of cholesterol. Biophys J. 2001 Oct;81(4):2257–2267. doi: 10.1016/S0006-3495(01)75873-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McLean L. R., Phillips M. C. Cholesterol desorption from clusters of phosphatidylcholine and cholesterol in unilamellar vesicle bilayers during lipid transfer or exchange. Biochemistry. 1982 Aug 17;21(17):4053–4059. doi: 10.1021/bi00260a022. [DOI] [PubMed] [Google Scholar]
- McLean L. R., Phillips M. C. Kinetics of phosphatidylcholine and lysophosphatidylcholine exchange between unilamellar vesicles. Biochemistry. 1984 Sep 25;23(20):4624–4630. doi: 10.1021/bi00315a017. [DOI] [PubMed] [Google Scholar]
- McLean L. R., Phillips M. C. Mechanism of cholesterol and phosphatidylcholine exchange or transfer between unilamellar vesicles. Biochemistry. 1981 May 12;20(10):2893–2900. doi: 10.1021/bi00513a028. [DOI] [PubMed] [Google Scholar]
- Müller Peter, Herrmann Andreas. Rapid transbilayer movement of spin-labeled steroids in human erythrocytes and in liposomes. Biophys J. 2002 Mar;82(3):1418–1428. doi: 10.1016/S0006-3495(02)75496-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nichols J. W., Pagano R. E. Kinetics of soluble lipid monomer diffusion between vesicles. Biochemistry. 1981 May 12;20(10):2783–2789. doi: 10.1021/bi00513a012. [DOI] [PubMed] [Google Scholar]
- Nichols J. W. Thermodynamics and kinetics of phospholipid monomer-vesicle interaction. Biochemistry. 1985 Nov 5;24(23):6390–6398. doi: 10.1021/bi00344a011. [DOI] [PubMed] [Google Scholar]
- Ohtani Y., Irie T., Uekama K., Fukunaga K., Pitha J. Differential effects of alpha-, beta- and gamma-cyclodextrins on human erythrocytes. Eur J Biochem. 1989 Dec 8;186(1-2):17–22. doi: 10.1111/j.1432-1033.1989.tb15171.x. [DOI] [PubMed] [Google Scholar]
- Phillips M. C., Johnson W. J., Rothblat G. H. Mechanisms and consequences of cellular cholesterol exchange and transfer. Biochim Biophys Acta. 1987 Jun 24;906(2):223–276. doi: 10.1016/0304-4157(87)90013-x. [DOI] [PubMed] [Google Scholar]
- Poznansky M. J., Czekanski S. Cholesterol exchange as a function of cholesterol/phospholipid mole ratios. Biochem J. 1979 Mar 1;177(3):989–991. doi: 10.1042/bj1770989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Regev R., Eytan G. D. Flip-flop of doxorubicin across erythrocyte and lipid membranes. Biochem Pharmacol. 1997 Nov 15;54(10):1151–1158. doi: 10.1016/s0006-2952(97)00326-2. [DOI] [PubMed] [Google Scholar]
- Rodrigueza W. V., Wheeler J. J., Klimuk S. K., Kitson C. N., Hope M. J. Transbilayer movement and net flux of cholesterol and cholesterol sulfate between liposomal membranes. Biochemistry. 1995 May 9;34(18):6208–6217. doi: 10.1021/bi00018a025. [DOI] [PubMed] [Google Scholar]
- Rothblat G. H., de la Llera-Moya M., Atger V., Kellner-Weibel G., Williams D. L., Phillips M. C. Cell cholesterol efflux: integration of old and new observations provides new insights. J Lipid Res. 1999 May;40(5):781–796. [PubMed] [Google Scholar]
- Schroeder F., Frolov A. A., Murphy E. J., Atshaves B. P., Jefferson J. R., Pu L., Wood W. G., Foxworth W. B., Kier A. B. Recent advances in membrane cholesterol domain dynamics and intracellular cholesterol trafficking. Proc Soc Exp Biol Med. 1996 Nov;213(2):150–177. doi: 10.3181/00379727-213-44047. [DOI] [PubMed] [Google Scholar]
- Schroeder F., Nemecz G., Wood W. G., Joiner C., Morrot G., Ayraut-Jarrier M., Devaux P. F. Transmembrane distribution of sterol in the human erythrocyte. Biochim Biophys Acta. 1991 Jul 22;1066(2):183–192. doi: 10.1016/0005-2736(91)90185-b. [DOI] [PubMed] [Google Scholar]
- Simons K., Ikonen E. How cells handle cholesterol. Science. 2000 Dec 1;290(5497):1721–1726. doi: 10.1126/science.290.5497.1721. [DOI] [PubMed] [Google Scholar]
- Slotte J. P., Lundberg B. Transfer of [3H]cholesterol between lipid vesicles and rat arterial smooth muscle cells in vitro. Biochim Biophys Acta. 1983 Mar 1;750(3):434–439. doi: 10.1016/0005-2760(83)90182-0. [DOI] [PubMed] [Google Scholar]
- Steck T. L., Kezdy F. J., Lange Y. An activation-collision mechanism for cholesterol transfer between membranes. J Biol Chem. 1988 Sep 15;263(26):13023–13031. [PubMed] [Google Scholar]
- Tanhuanpä K., Cheng K. H., Anttonen K., Virtanen J. A., Somerharju P. Characteristics of pyrene phospholipid/gamma-cyclodextrin complex. Biophys J. 2001 Sep;81(3):1501–1510. doi: 10.1016/S0006-3495(01)75804-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tanhuanpä K., Somerharju P. gamma-cyclodextrins greatly enhance translocation of hydrophobic fluorescent phospholipids from vesicles to cells in culture. Importance of molecular hydrophobicity in phospholipid trafficking studies. J Biol Chem. 1999 Dec 10;274(50):35359–35366. doi: 10.1074/jbc.274.50.35359. [DOI] [PubMed] [Google Scholar]
- Thurnhofer H., Hauser H. Uptake of cholesterol by small intestinal brush border membrane is protein-mediated. Biochemistry. 1990 Feb 27;29(8):2142–2148. doi: 10.1021/bi00460a026. [DOI] [PubMed] [Google Scholar]
- Wimley W. C., Thompson T. E. Phosphatidylethanolamine enhances the concentration-dependent exchange of phospholipids between bilayers. Biochemistry. 1991 Apr 30;30(17):4200–4204. doi: 10.1021/bi00231a014. [DOI] [PubMed] [Google Scholar]
- Yancey P. G., Rodrigueza W. V., Kilsdonk E. P., Stoudt G. W., Johnson W. J., Phillips M. C., Rothblat G. H. Cellular cholesterol efflux mediated by cyclodextrins. Demonstration Of kinetic pools and mechanism of efflux. J Biol Chem. 1996 Jul 5;271(27):16026–16034. doi: 10.1074/jbc.271.27.16026. [DOI] [PubMed] [Google Scholar]
- Yang E., Huestis W. H. Mechanism of intermembrane phosphatidylcholine transfer: effects of pH and membrane configuration. Biochemistry. 1993 Nov 16;32(45):12218–12228. doi: 10.1021/bi00096a035. [DOI] [PubMed] [Google Scholar]
- Zucker S. D., Goessling W., Hoppin A. G. Unconjugated bilirubin exhibits spontaneous diffusion through model lipid bilayers and native hepatocyte membranes. J Biol Chem. 1999 Apr 16;274(16):10852–10862. doi: 10.1074/jbc.274.16.10852. [DOI] [PubMed] [Google Scholar]