Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1979 Jan;25(1):33–44. doi: 10.1016/S0006-3495(79)85276-5

Reference phase analysis of free and bound intracellular solutes. I. Sodium and potassium in amphibian oocytes.

S B Horowitz, P L Paine, L Tluczek, J K Reynhout
PMCID: PMC1328446  PMID: 262385

Abstract

A method is described for the quantitative determination of free and bound solute concentrations in the cytoplasm of intact cells. The method includes (a) introduction of a gelatin gel reference phase (RP) into the cytoplasm; (b) diffusion of dissolved substances between cytoplasm and RP, (c) cell quenching to - 196 degrees C to prevent subsequent solute redistributions, (d) ultra-low temperature microdissection to isolate RP and cytoplasm samples, and (e) analysis of isolates for solute and water content. In normal oocytes of the salamander, Desmognathus ochrophaeus, free or RP Na+ and K+ are 21.0 +/- 1.1 and 128.8 +/- 2.4 mu eq/ml, respectively, and vary stoichiometrically in altered oocytes. Overall cytoplasmic concentrations are 75.2 +/- 2.7 mu eq Na+/ml and 88.6 +/- 1.5 mu eq K+/ml. Cytoplasmic chemical activities are 16.2 mu eq Na+/ml and 99.2 mu eq K+/ml, corresponding to activity coefficients of 0.22 and 1.12, respectively. The results demonstrate unambiguously that (a) oocytes actively transport Na+ and K+, and (b) cytoplasm has important binding properties which differentiate it from an ordinary aqueous solution. These cytoplasmic properties are investigated in the following paper.

Full text

PDF
33

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AMES B. N., DUBIN D. T. The role of polyamines in the neutralization of bacteriophage deoxyribonucleic acid. J Biol Chem. 1960 Mar;235:769–775. [PubMed] [Google Scholar]
  2. Caldwell P. C. Factors governing movement and distribution of inorganic ions in nerve and muscle. Physiol Rev. 1968 Jan;48(1):1–64. doi: 10.1152/physrev.1968.48.1.1. [DOI] [PubMed] [Google Scholar]
  3. Century T. J., Fenichel I. R., Horowitz S. B. The concentrations of water, sodium and potassium in the nucleus and cytoplasm of amphibian oocytes. J Cell Sci. 1970 Jul;7(1):5–13. doi: 10.1242/jcs.7.1.5. [DOI] [PubMed] [Google Scholar]
  4. Century T. J., Horowitz S. B. Sodium exchange in the cytoplasm and nucleus of amphibian oocytes. J Cell Sci. 1974 Nov;16(2):465–471. doi: 10.1242/jcs.16.2.465. [DOI] [PubMed] [Google Scholar]
  5. Civan M. M. Intracellular activities of sodium and potassium. Am J Physiol. 1978 Apr;234(4):F261–F269. doi: 10.1152/ajprenal.1978.234.4.F261. [DOI] [PubMed] [Google Scholar]
  6. Cooke R., Kuntz I. D. The properties of water in biological systems. Annu Rev Biophys Bioeng. 1974;3(0):95–126. doi: 10.1146/annurev.bb.03.060174.000523. [DOI] [PubMed] [Google Scholar]
  7. Edzes H. T., Berendsen H. J. The physical state of diffusible ions in cells. Annu Rev Biophys Bioeng. 1975;4(00):265–285. doi: 10.1146/annurev.bb.04.060175.001405. [DOI] [PubMed] [Google Scholar]
  8. Frank M., Horowitz S. B. Nucleocytoplasmic transport and distribution of an amino acid, in situ. J Cell Sci. 1975 Oct;19(1):127–139. doi: 10.1242/jcs.19.1.127. [DOI] [PubMed] [Google Scholar]
  9. Horowitz S. B., Fenichel I. R. Analysis of glycerol-3H transport in the frog oocyte by extractive and radioautographic techniques. J Gen Physiol. 1968 Jun;51(6):703–730. doi: 10.1085/jgp.51.6.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Horowitz S. B., Fenichel I. R. Analysis of sodium transport in the amphibian oocyte by extractive and radioautographic techniques. J Cell Biol. 1970 Oct;47(1):120–131. doi: 10.1083/jcb.47.1.120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Horowitz S. B., Fenichel I. R., Hoffman B., Kollmann G., Shapiro B. The intracellular transport and distribution of cysteamine phosphate derivatives. Biophys J. 1970 Oct;10(10):994–1010. doi: 10.1016/S0006-3495(70)86348-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Horowitz S. B., Moore L. C. The nuclear permeability, intracellular distribution, and diffusion of inulin in the amphibian oocyte. J Cell Biol. 1974 Feb;60(2):405–415. doi: 10.1083/jcb.60.2.405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Horowitz S. B., Paine P. L. Cytoplasmic exclusion as a basis for asymmetric nucleocytoplasmic solute distributions. Nature. 1976 Mar 11;260(5547):151–153. doi: 10.1038/260151a0. [DOI] [PubMed] [Google Scholar]
  14. Horowitz S. B., Paine P. L. Reference phase analysis of free and bound intracellular solutes. II. Isothermal and isotopic studies of cytoplasmic sodium, potassium, and water. Biophys J. 1979 Jan;25(1):45–62. doi: 10.1016/S0006-3495(79)85277-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Horowitz S. B. The permeability of the amphibian oocyte nucleus, in situ. J Cell Biol. 1972 Sep;54(3):609–625. doi: 10.1083/jcb.54.3.609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Horowitz S. B. The ultra-low temperature autoradiography of water and its solutes. Methods Cell Biol. 1974;8(0):249–275. doi: 10.1016/s0091-679x(08)60454-9. [DOI] [PubMed] [Google Scholar]
  17. Klein R. L., Horton C. R., Thureson-Klein A. Studies on nuclear amino acid transport and cation content in embryonic myocardium of the chick. Am J Cardiol. 1970 Mar;25(3):300–310. doi: 10.1016/s0002-9149(70)80007-8. [DOI] [PubMed] [Google Scholar]
  18. Ling G. N. The physical state of water and ions in living cells and a new theory of the energization of biological work performance by ATP. Mol Cell Biochem. 1977 May 3;15(3):159–172. doi: 10.1007/BF01734106. [DOI] [PubMed] [Google Scholar]
  19. Moore R. D., Morrill G. A. A possible mechanism for concentrating sodium and potassium in the cell nucleus. Biophys J. 1976 May;16(5):527–533. doi: 10.1016/S0006-3495(76)85707-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Paine P. L., Moore L. C., Horowitz S. B. Nuclear envelope permeability. Nature. 1975 Mar 13;254(5496):109–114. doi: 10.1038/254109a0. [DOI] [PubMed] [Google Scholar]
  21. Palmer L. G., Century T. J., Civan M. M. Activity coefficients of intracellular Na+ and K+ during development of frog oocytes. J Membr Biol. 1978 Apr 20;40(1):25–38. doi: 10.1007/BF01909737. [DOI] [PubMed] [Google Scholar]
  22. Pauly H. Uber den physikalisch-chemischen Zustand des Wassers und der Elektrolyte in der lebenden Zelle. Biophysik. 1973;10(3):7–32. doi: 10.1007/BF01189907. [DOI] [PubMed] [Google Scholar]
  23. Siebert G., Langendorf H., Hannover R., Nitz-Litzow D., Pressman B. C., Moore C. Untersuchungen zur Rolle des Natrium-Stoffwechels im Zellkern der Rattenleber. Hoppe Seylers Z Physiol Chem. 1965;343(1):101–115. [PubMed] [Google Scholar]
  24. Wright E. M., Diamond J. M. Anion selectivity in biological systems. Physiol Rev. 1977 Jan;57(1):109–156. doi: 10.1152/physrev.1977.57.1.109. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES