Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1979 Jan;25(1):181–201. doi: 10.1016/S0006-3495(79)85284-4

Electrical Properties of Structural Components of the Crystalline Lens

R T Mathias, J L Rae, R S Eisenberg
PMCID: PMC1328454  PMID: 262384

Abstract

The electrical properties of the crystalline lens of the frog eye are measured with stochastic currents applied with a microelectrode near the center of the preparation and potential recorded just under the surface. The stochastic signals are decomposed by Fourier analysis into sinusoidal components, and the impedance is determined from the ratio of mean cross power to input power. The data are fit by an electrical model that includes two paths for current flow: one through the cytoplasm, gap junctions, and outer membrane; the other through inner membranes and the extracellular space between lens fibers. The electrical properties of the structures of the lens which appear as circuit components in the model are determined by the fit to the data. The resistivity of the extracellular space within the lens is comparable to the resistivity of Ringer. The outer membrane has a normal resistance of 5 kohm · cm2 but large capacitance of 10 μF/cm2, probably because it represents the properties of several layers of fibers. The inner membranes have properties reminiscent of artificial lipid bilayers: they have high membrane resistance, 2.2 megohm · cm2, and low specific capacitance, 0.8 μF/cm2. There is so much membrane within the lens, however, that the sum of the current flow across all the inner membranes is comparable to that across the outer surface.

Full text

PDF
181

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benedetti E. L., Dunia I., Bentzel C. J., Vermorken A. J., Kibbelaar M., Bloemendal H. A portrait of plasma membrane specializations in eye lens epithelium and fibers. Biochim Biophys Acta. 1976 Dec 14;457(3-4):353–384. doi: 10.1016/0304-4157(76)90004-6. [DOI] [PubMed] [Google Scholar]
  2. Crowe L. M., Baskin R. J. Stereological analysis of developing sarcotubular membranes. J Ultrastruct Res. 1977 Jan;58(1):10–21. doi: 10.1016/s0022-5320(77)80003-8. [DOI] [PubMed] [Google Scholar]
  3. Duncan G. The site of the ion restricting membranes in the toad lens. Exp Eye Res. 1969 Oct;8(4):406–412. doi: 10.1016/s0014-4835(69)80006-0. [DOI] [PubMed] [Google Scholar]
  4. Eisenberg R. S., Barcilon V., Mathias R. T. Electrical properties of spherical syncytia. Biophys J. 1979 Jan;25(1):151–180. doi: 10.1016/S0006-3495(79)85283-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Eisenberg R. S., Gage P. W. Ionic conductances of the surface and transverse tubular membranes of frog sartorius fibers. J Gen Physiol. 1969 Mar;53(3):279–297. doi: 10.1085/jgp.53.3.279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Eisenberg R. S., Mathias R. T., Rae J. S. Measurement, modeling, and analysis of the linear electrical properties of cells. Ann N Y Acad Sci. 1977 Dec 30;303:342–354. [PubMed] [Google Scholar]
  7. Eisenberg R. S., Rae J. L. Current-voltage relationships in the crystalline lens. J Physiol. 1976 Nov;262(2):285–300. doi: 10.1113/jphysiol.1976.sp011596. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Mathias R. T., Eisenberg R. S., Valdiosera R. Electrical properties of frog skeletal muscle fibers interpreted with a mesh model of the tubular system. Biophys J. 1977 Jan;17(1):57–93. doi: 10.1016/S0006-3495(77)85627-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Rae J. L. The electrophysiology of the crystalline lens. Curr Top Eye Res. 1979;1:37–90. [PubMed] [Google Scholar]
  10. Rae J. L. The movement of procion dye in the crystalline lens. Invest Ophthalmol. 1974 Feb;13(2):147–150. [PubMed] [Google Scholar]
  11. Rae J. L. The potential difference of the frog lens. Exp Eye Res. 1973 Apr;15(4):485–494. doi: 10.1016/0014-4835(73)90140-1. [DOI] [PubMed] [Google Scholar]
  12. TOSTESON D. C., HOFFMAN J. F. Regulation of cell volume by active cation transport in high and low potassium sheep red cells. J Gen Physiol. 1960 Sep;44:169–194. doi: 10.1085/jgp.44.1.169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Valdiosera R., Clausen C., Eisenberg R. S. Impedance of frog skeletal muscle fibers in various solutions. J Gen Physiol. 1974 Apr;63(4):460–491. doi: 10.1085/jgp.63.4.460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Yorio T., Bentley P. J. Distribution of the extracellular space of the amphibian lens. Exp Eye Res. 1976 Dec;23(6):601–608. doi: 10.1016/0014-4835(76)90218-9. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES