Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1988 May;53(5):697–707. doi: 10.1016/S0006-3495(88)83151-5

Permeation characteristics of gramicidin conformers.

D Busath 1, G Szabo 1
PMCID: PMC1330248  PMID: 2455549

Abstract

To investigate the molecular origin of decreased conductance in variant gramicidin channels, we examined the current-voltage (IV) characteristics of single Val1-gramicidin A channels. Unlike standard channels, all variant channels showed pronounced rectification even though bathing solutions were symmetrical. Moreover, channels of lower conductance consistently showed more pronounced rectification. Analysis within the framework of a three-barrier, two-site, single-filing model indicates that the shape of the variant channel IVs could be best explained by an increase in binding affinity near one of the two channel entrances. This conclusion was further tested by characterizing single channel IVs in bi-ionic solutions having different cationic species at each channel entrance. In Cs/Na bi-ionic solutions, reversal potentials of variant channels often differed by a small but significant amount from those of standard channels. When a membrane potential was applied, the ionic currents tended to be reduced more when flowing from the Na+ side than the Cs+ side. These observations support the conclusion that variant channels have increased binding affinity at one end of the channel. Furthermore, H+ currents were increased while Ag+ currents were unaltered for most variant channels exhibiting decreased Na+ or Cs+ currents. The increased H+ conductance argues against long-range coulombic forces as the basis for decreased Na+ or Cs+ conductance while the normal Ag+ conductance suggests that the binding site field strength increases by a change in carbonyl geometry at the channel entrance.

Full text

PDF
697

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen O. S. Ion movement through gramicidin A channels. Single-channel measurements at very high potentials. Biophys J. 1983 Feb;41(2):119–133. doi: 10.1016/S0006-3495(83)84414-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Andersen O. S., Procopio J. Ion movement through gramicidin A channels. On the importance of the aqueous diffusion resistance and ion-water interactions. Acta Physiol Scand Suppl. 1980;481:27–35. [PubMed] [Google Scholar]
  3. Begenisich T. B., Cahalan M. D. Sodium channel permeation in squid axons. I: Reversal potential experiments. J Physiol. 1980 Oct;307:217–242. doi: 10.1113/jphysiol.1980.sp013432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Busath D., Szabo G. Low conductance gramicidin A channels are head-to-head dimers of beta 6.3-helices. Biophys J. 1988 May;53(5):689–695. doi: 10.1016/S0006-3495(88)83150-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Eisenman G., Sandblom J., Neher E. Interactions in cation permeation through the gramicidin channel. Cs, Rb, K, Na, Li, Tl, H, and effects of anion binding. Biophys J. 1978 May;22(2):307–340. doi: 10.1016/S0006-3495(78)85491-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hille B., Schwarz W. Potassium channels as multi-ion single-file pores. J Gen Physiol. 1978 Oct;72(4):409–442. doi: 10.1085/jgp.72.4.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hladky S. B., Haydon D. A. Ion transfer across lipid membranes in the presence of gramicidin A. I. Studies of the unit conductance channel. Biochim Biophys Acta. 1972 Aug 9;274(2):294–312. doi: 10.1016/0005-2736(72)90178-2. [DOI] [PubMed] [Google Scholar]
  8. Levitt D. G., Elias S. R., Hautman J. M. Number of water molecules coupled to the transport of sodium, potassium and hydrogen ions via gramicidin, nonactin or valinomycin. Biochim Biophys Acta. 1978 Sep 22;512(2):436–451. doi: 10.1016/0005-2736(78)90266-3. [DOI] [PubMed] [Google Scholar]
  9. Mackay D. H., Berens P. H., Wilson K. R., Hagler A. T. Structure and dynamics of ion transport through gramicidin A. Biophys J. 1984 Aug;46(2):229–248. doi: 10.1016/S0006-3495(84)84016-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Monoi H., Uedaira H. Na+ interacting with gramicidin D. A nuclear magnetic resonance study. Biophys J. 1979 Mar;25(3):535–540. doi: 10.1016/S0006-3495(79)85321-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Rosenberg P. A., Finkelstein A. Interaction of ions and water in gramicidin A channels: streaming potentials across lipid bilayer membranes. J Gen Physiol. 1978 Sep;72(3):327–340. doi: 10.1085/jgp.72.3.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Sandblom J., Eisenman G., Neher E. Ionic selectivity, saturation and block in gramicidin A channels: I. Theory for the electrical properties of ion selective channels having two pairs of binding sites and multiple conductance states. J Membr Biol. 1977 Mar 23;31(4):383–347. doi: 10.1007/BF01869414. [DOI] [PubMed] [Google Scholar]
  13. Schagina L. V., Grinfeldt A. E., Lev A. A. Interaction of cation fluxes in gramicidin A channels in lipid bilayer membranes. Nature. 1978 May 18;273(5659):243–245. doi: 10.1038/273243a0. [DOI] [PubMed] [Google Scholar]
  14. Urban B. W., Hladky S. B., Haydon D. A. Ion movements in gramicidin pores. An example of single-file transport. Biochim Biophys Acta. 1980 Nov 4;602(2):331–354. doi: 10.1016/0005-2736(80)90316-8. [DOI] [PubMed] [Google Scholar]
  15. Urban B. W., Hladky S. B., Haydon D. A. The kinetics of ion movements in the gramicidin channel. Fed Proc. 1978 Oct;37(12):2628–2632. [PubMed] [Google Scholar]
  16. Urban B. W., Hladky S. B. Ion transport in the simplest single file pore. Biochim Biophys Acta. 1979 Jul 5;554(2):410–429. doi: 10.1016/0005-2736(79)90381-x. [DOI] [PubMed] [Google Scholar]
  17. Urry D. W., Prasad K. U., Trapane T. L. Location of monovalent cation binding sites in the gramicidin channel. Proc Natl Acad Sci U S A. 1982 Jan;79(2):390–394. doi: 10.1073/pnas.79.2.390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Urry D. W., Venkatachalam C. M., Spisni A., Bradley R. J., Trapane T. L., Prasad K. U. The malonyl gramicidin channel: NMR-derived rate constants and comparison of calculated and experimental single-channel currents. J Membr Biol. 1980 Jun 30;55(1):29–51. doi: 10.1007/BF01926368. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES