Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1988 Aug;54(2):351–355. doi: 10.1016/S0006-3495(88)82966-7

Hindered diffusion in excised membrane patches from retinal rod outer segments.

A L Zimmerman 1, J W Karpen 1, D A Baylor 1
PMCID: PMC1330303  PMID: 3207830

Abstract

Excised inside-out membrane patches are useful for studying the cGMP-activated ion channels that generate the electrical response to light in retinal rod cells. We show that strong ionic current across a patch changes the driving force on the current by altering the ionic concentration near the surface membrane, an effect somewhat like that first described by Frankenhaeuser and Hodgkin (1956) in squid axons. The dominant concentration change occurs in the solution adjacent to the cytoplasmic (inner) surface of the membrane, where diffusion is impaired by intracellular material that adheres to the patch during excision. The magnitude and time course of the ionic changes are consistent with the expected volume of this material and with an effective diffusion coefficient about an order of magnitude less than that in free solution. Methods are described for correcting current transients observed in voltage clamp experiments, so that channel gating kinetics can be obtained without contamination by changes in driving force. We suggest that restricted diffusion may occur in patches excised from other types of cells and influence rapid kinetic measurements.

Full text

PDF
351

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cohen A. I. Electron microscope observations on form changes in photoreceptor outer segments and their saccules in response to osmotic stress. J Cell Biol. 1971 Mar;48(3):547–565. doi: 10.1083/jcb.48.3.547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. FRANKENHAEUSER B., HODGKIN A. L. The after-effects of impulses in the giant nerve fibres of Loligo. J Physiol. 1956 Feb 28;131(2):341–376. doi: 10.1113/jphysiol.1956.sp005467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Falk G., Fatt P. Distinctive properties of the lamellar and disk-edge structures of the rod outer segment. J Ultrastruct Res. 1969 Jul;28(1):41–60. doi: 10.1016/s0022-5320(69)90005-7. [DOI] [PubMed] [Google Scholar]
  4. Fesenko E. E., Kolesnikov S. S., Lyubarsky A. L. Induction by cyclic GMP of cationic conductance in plasma membrane of retinal rod outer segment. Nature. 1985 Jan 24;313(6000):310–313. doi: 10.1038/313310a0. [DOI] [PubMed] [Google Scholar]
  5. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  6. Haynes L. W., Kay A. R., Yau K. W. Single cyclic GMP-activated channel activity in excised patches of rod outer segment membrane. Nature. 1986 May 1;321(6065):66–70. doi: 10.1038/321066a0. [DOI] [PubMed] [Google Scholar]
  7. Karpen J. W., Zimmerman A. L., Stryer L., Baylor D. A. Gating kinetics of the cyclic-GMP-activated channel of retinal rods: flash photolysis and voltage-jump studies. Proc Natl Acad Sci U S A. 1988 Feb;85(4):1287–1291. doi: 10.1073/pnas.85.4.1287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Matthews G., Watanabe S. Properties of ion channels closed by light and opened by guanosine 3',5'-cyclic monophosphate in toad retinal rods. J Physiol. 1987 Aug;389:691–715. doi: 10.1113/jphysiol.1987.sp016678. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Molday R. S., Hicks D., Molday L. Peripherin. A rim-specific membrane protein of rod outer segment discs. Invest Ophthalmol Vis Sci. 1987 Jan;28(1):50–61. [PubMed] [Google Scholar]
  10. Roof D. J., Heuser J. E. Surfaces of rod photoreceptor disk membranes: integral membrane components. J Cell Biol. 1982 Nov;95(2 Pt 1):487–500. doi: 10.1083/jcb.95.2.487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Stern J. H., Kaupp U. B., MacLeish P. R. Control of the light-regulated current in rod photoreceptors by cyclic GMP, calcium, and l-cis-diltiazem. Proc Natl Acad Sci U S A. 1986 Feb;83(4):1163–1167. doi: 10.1073/pnas.83.4.1163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Stryer L. Cyclic GMP cascade of vision. Annu Rev Neurosci. 1986;9:87–119. doi: 10.1146/annurev.ne.09.030186.000511. [DOI] [PubMed] [Google Scholar]
  13. Zimmerman A. L., Baylor D. A. Cyclic GMP-sensitive conductance of retinal rods consists of aqueous pores. Nature. 1986 May 1;321(6065):70–72. doi: 10.1038/321070a0. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES