Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1974 Feb;237(1):49–74. doi: 10.1113/jphysiol.1974.sp010469

The effect of visual experience on the development of stimulus specificity by kitten cortical neurones

J D Pettigrew
PMCID: PMC1350868  PMID: 4595665

Abstract

1. 284 single cortical neurones were studied in area seventeen of twenty-five normal kittens and of fifteen kittens, binocularly deprived, whose first visual experience had been delayed until the experiment by bilateral lid-suture. Both normal and binocularly deprived kittens ranged in age from 1 to 6 weeks.

2. The optimal, binocularly presented, visual stimulus and receptive fields were determined for each neurone by varying target configuration, speed and direction of movement and the prism-induced alignment of both eyes. Repetitive, controlled stimulation in eighty-four cases allowed quantitative estimates to be made of the response selectivity for the target configuration (spot vs. line), the direction of target motion and the prism-induced disparity between the retinal images of the binocular target.

3. Before the fourth post-natal week neurones from both normal and binocularly deprived cortex showed similar properties: selectivity for direction of target motion was present in both preparations but both lacked binocular specificity and dependence on target configuration.

4. After the fourth week, normal kittens had increasing numbers of neurones with selective responses which were dependent upon target configuration and the degree of binocular misalignment. The proportion of selective neurones approached the adult value after the fifth week.

5. The cortex of binocularly deprived kittens failed to show an increase of selectivity with age, and of 150 neurones, sixty-two were visually unresponsive, two showed selectivity which was dependent upon target configuration and none showed selectivity for prism-induced retinal disparity.

6. The data are not consistent with the hypothesis that the highly specific response properties of visual cortical neurones can develop without appropriate visual experience. Innate mechanisms appear to be sufficient for the development of the excitatory connexions producing motion sensitivity and receptive field location on both retinas, but patterned visual experience is necessary for the `fine-tuning' which vetoes responses to stimuli with non-optimal configuration or binocular disparity.

Full text

PDF
49

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARLOW H. B., HILL R. M., LEVICK W. R. RETINAL GANGLION CELLS RESPONDING SELECTIVELY TO DIRECTION AND SPEED OF IMAGE MOTION IN THE RABBIT. J Physiol. 1964 Oct;173:377–407. doi: 10.1113/jphysiol.1964.sp007463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BARLOW H. B. Summation and inhibition in the frog's retina. J Physiol. 1953 Jan;119(1):69–88. doi: 10.1113/jphysiol.1953.sp004829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BISHOP P. O., BURKE W., DAVIS R. The identification of single units in central visual pathways. J Physiol. 1962 Aug;162:409–431. doi: 10.1113/jphysiol.1962.sp006942. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barlow H. B., Blakemore C., Pettigrew J. D. The neural mechanism of binocular depth discrimination. J Physiol. 1967 Nov;193(2):327–342. doi: 10.1113/jphysiol.1967.sp008360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Barlow H. B., Levick W. R. The mechanism of directionally selective units in rabbit's retina. J Physiol. 1965 Jun;178(3):477–504. doi: 10.1113/jphysiol.1965.sp007638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Barlow H. B., Pettigrew J. D. Lack of specificity of neurones in the visual cortex of young kittens. J Physiol. 1971 Oct;218 (Suppl):98P–100P. [PubMed] [Google Scholar]
  7. Bishop P. O., Coombs J. S., Henry G. H. Interaction effects of visual contours on the discharge frequency of simple striate neurones. J Physiol. 1971 Dec;219(3):659–687. doi: 10.1113/jphysiol.1971.sp009682. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bishop P. O., Henry G. H., Smith C. J. Binocular interaction fields of single units in the cat striate cortex. J Physiol. 1971 Jul;216(1):39–68. doi: 10.1113/jphysiol.1971.sp009508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Blakemore C., Cooper G. F. Development of the brain depends on the visual environment. Nature. 1970 Oct 31;228(5270):477–478. doi: 10.1038/228477a0. [DOI] [PubMed] [Google Scholar]
  10. Blakemore C., Mitchell D. E. Environmental modification of the visual cortex and the neural basis of learning and memory. Nature. 1973 Feb 16;241(5390):467–468. doi: 10.1038/241467a0. [DOI] [PubMed] [Google Scholar]
  11. Campbell F. W., Cleland B. G., Cooper G. F., Enroth-Cugell C. The angular selectivity of visual cortical cells to moving gratings. J Physiol. 1968 Sep;198(1):237–250. doi: 10.1113/jphysiol.1968.sp008604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Cragg B. G. The development of synapses in cat visual cortex. Invest Ophthalmol. 1972 May;11(5):377–385. [PubMed] [Google Scholar]
  13. Cynader M., Berman N., Hein A. Cats reared in stroboscopic illumination: effects on receptive fields in visual cortex. Proc Natl Acad Sci U S A. 1973 May;70(5):1353–1354. doi: 10.1073/pnas.70.5.1353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Donovan A. The postnatal development of the cat retina. Exp Eye Res. 1966 Oct;5(4):249–254. doi: 10.1016/s0014-4835(66)80034-9. [DOI] [PubMed] [Google Scholar]
  15. Gross C. G., Rocha-Miranda C. E., Bender D. B. Visual properties of neurons in inferotemporal cortex of the Macaque. J Neurophysiol. 1972 Jan;35(1):96–111. doi: 10.1152/jn.1972.35.1.96. [DOI] [PubMed] [Google Scholar]
  16. HUBEL D. H., WIESEL T. N. RECEPTIVE FIELDS AND FUNCTIONAL ARCHITECTURE IN TWO NONSTRIATE VISUAL AREAS (18 AND 19) OF THE CAT. J Neurophysiol. 1965 Mar;28:229–289. doi: 10.1152/jn.1965.28.2.229. [DOI] [PubMed] [Google Scholar]
  17. HUBEL D. H., WIESEL T. N. RECEPTIVE FIELDS OF CELLS IN STRIATE CORTEX OF VERY YOUNG, VISUALLY INEXPERIENCED KITTENS. J Neurophysiol. 1963 Nov;26:994–1002. doi: 10.1152/jn.1963.26.6.994. [DOI] [PubMed] [Google Scholar]
  18. HUBEL D. H., WIESEL T. N. Receptive fields of single neurones in the cat's striate cortex. J Physiol. 1959 Oct;148:574–591. doi: 10.1113/jphysiol.1959.sp006308. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. HUBEL D. H., WIESEL T. N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J Physiol. 1962 Jan;160:106–154. doi: 10.1113/jphysiol.1962.sp006837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Henry G. H., Bishop P. O., Coombs J. S. Inhibitory and sub-liminal excitatory receptive fields of simple units in cat striate cortex. Vision Res. 1969 Oct;9(10):1289–1296. doi: 10.1016/0042-6989(69)90116-3. [DOI] [PubMed] [Google Scholar]
  21. Hirsch H. V., Spinelli D. N. Modification of the distribution of receptive field orientation in cats by selective visual exposure during development. Exp Brain Res. 1971 Jun 29;12(5):509–527. doi: 10.1007/BF00234246. [DOI] [PubMed] [Google Scholar]
  22. Hirsch H. V., Spinelli D. N. Visual experience modifies distribution of horizontally and vertically oriented receptive fields in cats. Science. 1970 May 15;168(3933):869–871. doi: 10.1126/science.168.3933.869. [DOI] [PubMed] [Google Scholar]
  23. Hubel D. H., Wiesel T. N. Aberrant visual projections in the Siamese cat. J Physiol. 1971 Oct;218(1):33–62. doi: 10.1113/jphysiol.1971.sp009603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Hubel D. H., Wiesel T. N. The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J Physiol. 1970 Feb;206(2):419–436. doi: 10.1113/jphysiol.1970.sp009022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Joshua D. E., Bishop P. O. Binocular single vision and depth discrimination. Receptive field disparities for central and peripheral vision and binocular interaction on peripheral single units in cat striate cortex. Exp Brain Res. 1970;10(4):389–416. doi: 10.1007/BF02324766. [DOI] [PubMed] [Google Scholar]
  26. Levick W. R. Another tungsten microelectrode. Med Biol Eng. 1972 Jul;10(4):510–515. doi: 10.1007/BF02474199. [DOI] [PubMed] [Google Scholar]
  27. Lund J. S., Lund R. D. The effects of varying periods of visual deprivation on synaptogenesis in the superior colliculus of the rat. Brain Res. 1972 Jul 13;42(1):21–32. doi: 10.1016/0006-8993(72)90039-x. [DOI] [PubMed] [Google Scholar]
  28. Nikara T., Bishop P. O., Pettigrew J. D. Analysis of retinal correspondence by studying receptive fields of binocular single units in cat striate cortex. Exp Brain Res. 1968;6(4):353–372. doi: 10.1007/BF00233184. [DOI] [PubMed] [Google Scholar]
  29. Pettigrew J. D., Daniels J. D. Gamma-aminobutyric acid antagonism in visual cortex: different effects on simple, complex, and hypercomplex neurons. Science. 1973 Oct 5;182(4107):81–83. doi: 10.1126/science.182.4107.81. [DOI] [PubMed] [Google Scholar]
  30. Pettigrew J. D., Nikara T., Bishop P. O. Binocular interaction on single units in cat striate cortex: simultaneous stimulation by single moving slit with receptive fields in correspondence. Exp Brain Res. 1968;6(4):391–410. doi: 10.1007/BF00233186. [DOI] [PubMed] [Google Scholar]
  31. Pettigrew J. D., Nikara T., Bishop P. O. Responses to moving slits by single units in cat striate cortex. Exp Brain Res. 1968;6(4):373–390. doi: 10.1007/BF00233185. [DOI] [PubMed] [Google Scholar]
  32. Pettigrew J. D. The importance of early visual experience for neurons of the developing geniculostriate system. Invest Ophthalmol. 1972 May;11(5):386–394. [PubMed] [Google Scholar]
  33. Sherman S. M. Development of interocular alignment in cats. Brain Res. 1972 Feb 25;37(2):187–203. doi: 10.1016/0006-8993(72)90666-x. [DOI] [PubMed] [Google Scholar]
  34. Sherman S. M., Sanderson K. J. Binocular interaction on cells of the dorsal lateral geniculate nucleus of visually deprived cats. Brain Res. 1972 Feb 11;37(1):126–131. doi: 10.1016/0006-8993(72)90353-8. [DOI] [PubMed] [Google Scholar]
  35. Shlaer R. Shift in binocular disparity causes compensatory change in the cortical structure of kittens. Science. 1971 Aug 13;173(3997):638–641. doi: 10.1126/science.173.3997.638. [DOI] [PubMed] [Google Scholar]
  36. Spinelli D. N., Pribram K. H., Bridgeman B. Visual receptive field organization of single units in the visual cortex of monkey. Int J Neurosci. 1970 Oct;1(1):67–74. doi: 10.3109/00207457009147618. [DOI] [PubMed] [Google Scholar]
  37. Stone J. A quantitative analysis of the distribution of ganglion cells in the cat's retina. J Comp Neurol. 1965 Jun;124(3):337–352. doi: 10.1002/cne.901240305. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES