Skip to main content
RNA logoLink to RNA
. 2000 Oct;6(10):1356–1379. doi: 10.1017/s1355838200001047

Search for characteristic structural features of mammalian mitochondrial tRNAs.

M Helm 1, H Brulé 1, D Friede 1, R Giegé 1, D Pütz 1, C Florentz 1
PMCID: PMC1370008  PMID: 11073213

Abstract

A number of mitochondrial (mt) tRNAs have strong structural deviations from the classical tRNA cloverleaf secondary structure and from the conventional L-shaped tertiary structure. As a consequence, there is a general trend to consider all mitochondrial tRNAs as "bizarre" tRNAs. Here, a large sequence comparison of the 22 tRNA genes within 31 fully sequenced mammalian mt genomes has been performed to define the structural characteristics of this specific group of tRNAs. Vertical alignments define the degree of conservation/variability of primary sequences and secondary structures and search for potential tertiary interactions within each of the 22 families. Further horizontal alignments ascertain that, with the exception of serine-specific tRNAs, mammalian mt tRNAs do fold into cloverleaf structures with mostly classical features. However, deviations exist and concern large variations in size of the D- and T-loops. The predominant absence of the conserved nucleotides G18G19 and T54T55C56, respectively in these loops, suggests that classical tertiary interactions between both domains do not take place. Classification of the tRNA sequences according to their genomic origin (G-rich or G-poor DNA strand) highlight specific features such as richness/poorness in mismatches or G-T pairs in stems and extremely low G-content or C-content in the D- and T-loops. The resulting 22 "typical" mammalian mitochondrial sequences built up a phylogenetic basis for experimental structural and functional investigations. Moreover, they are expected to help in the evaluation of the possible impacts of those point mutations detected in human mitochondrial tRNA genes and correlated with pathologies.

Full Text

The Full Text of this article is available as a PDF (5.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen J. F., Raven J. A. Free-radical-induced mutation vs redox regulation: costs and benefits of genes in organelles. J Mol Evol. 1996 May;42(5):482–492. doi: 10.1007/BF02352278. [DOI] [PubMed] [Google Scholar]
  2. Anderson S., Bankier A. T., Barrell B. G., de Bruijn M. H., Coulson A. R., Drouin J., Eperon I. C., Nierlich D. P., Roe B. A., Sanger F. Sequence and organization of the human mitochondrial genome. Nature. 1981 Apr 9;290(5806):457–465. doi: 10.1038/290457a0. [DOI] [PubMed] [Google Scholar]
  3. Boore J. L. Animal mitochondrial genomes. Nucleic Acids Res. 1999 Apr 15;27(8):1767–1780. doi: 10.1093/nar/27.8.1767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brulé H., Holmes W. M., Keith G., Giegé R., Florentz C. Effect of a mutation in the anticodon of human mitochondrial tRNAPro on its post-transcriptional modification pattern. Nucleic Acids Res. 1998 Jan 15;26(2):537–543. doi: 10.1093/nar/26.2.537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bullard J. M., Cai Y. C., Demeler B., Spremulli L. L. Expression and characterization of a human mitochondrial phenylalanyl-tRNA synthetase. J Mol Biol. 1999 May 14;288(4):567–577. doi: 10.1006/jmbi.1999.2708. [DOI] [PubMed] [Google Scholar]
  6. Bullard J. M., Cai Y. C., Spremulli L. L. Expression and characterization of the human mitochondrial leucyl-tRNA synthetase. Biochim Biophys Acta. 2000 Feb 29;1490(3):245–258. doi: 10.1016/s0167-4781(99)00240-7. [DOI] [PubMed] [Google Scholar]
  7. Börner G. V., Mörl M., Janke A., Päbo S. RNA editing changes the identity of a mitochondrial tRNA in marsupials. EMBO J. 1996 Nov 1;15(21):5949–5957. [PMC free article] [PubMed] [Google Scholar]
  8. Börner G. V., Yokobori S., Mörl M., Dörner M., Päbo S. RNA editing in metazoan mitochondria: staying fit without sex. FEBS Lett. 1997 Jun 16;409(3):320–324. doi: 10.1016/s0014-5793(97)00357-8. [DOI] [PubMed] [Google Scholar]
  9. Cantatore P., De Benedetto C., Gadaleta G., Gallerani R., Kroon A. M., Holtrop M., Lanave C., Pepe G., Quagliariello C., Saccone C. The nucleotide sequences of several tRNA genes from rat mitochondria: common features and relatedness to homologous species. Nucleic Acids Res. 1982 May 25;10(10):3279–3289. doi: 10.1093/nar/10.10.3279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chihade J. W., Hayashibara K., Shiba K., Schimmel P. Strong selective pressure to use G:U to mark an RNA acceptor stem for alanine. Biochemistry. 1998 Jun 23;37(25):9193–9202. doi: 10.1021/bi9804636. [DOI] [PubMed] [Google Scholar]
  11. Degoul F., Brulé H., Cepanec C., Helm M., Marsac C., Leroux J., Giegé R., Florentz C. Isoleucylation properties of native human mitochondrial tRNAIle and tRNAIle transcripts. Implications for cardiomyopathy-related point mutations (4269, 4317) in the tRNAIle gene. Hum Mol Genet. 1998 Mar;7(3):347–354. doi: 10.1093/hmg/7.3.347. [DOI] [PubMed] [Google Scholar]
  12. Giegé R., Puglisi J. D., Florentz C. tRNA structure and aminoacylation efficiency. Prog Nucleic Acid Res Mol Biol. 1993;45:129–206. doi: 10.1016/s0079-6603(08)60869-7. [DOI] [PubMed] [Google Scholar]
  13. Giegé R., Sissler M., Florentz C. Universal rules and idiosyncratic features in tRNA identity. Nucleic Acids Res. 1998 Nov 15;26(22):5017–5035. doi: 10.1093/nar/26.22.5017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Giorgi C. D., Martiradonna A., Saccone C. Evolutionary analysis of sea urchin mitochondrial tRNAs: folding of the molecules as suggested by the non-random occurrence of nucleotides. Curr Genet. 1996 Aug;30(3):191–199. doi: 10.1007/s002940050120. [DOI] [PubMed] [Google Scholar]
  15. Goto Y., Nonaka I., Horai S. A mutation in the tRNA(Leu)(UUR) gene associated with the MELAS subgroup of mitochondrial encephalomyopathies. Nature. 1990 Dec 13;348(6302):651–653. doi: 10.1038/348651a0. [DOI] [PubMed] [Google Scholar]
  16. Hayashi I., Kawai G., Watanabe K. Expression of bovine mitochondrial tRNASer GCU derivatives in Escherichia coli. Nucleic Acids Res. 1997 Sep 1;25(17):3503–3507. doi: 10.1093/nar/25.17.3503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hayashi I., Kawai G., Watanabe K. Higher-order structure and thermal instability of bovine mitochondrial tRNASerUGA investigated by proton NMR spectroscopy. J Mol Biol. 1998 Nov 20;284(1):57–69. doi: 10.1006/jmbi.1998.2151. [DOI] [PubMed] [Google Scholar]
  18. Hayashi I., Yokogawa T., Kawai G., Ueda T., Nishikawa K., Watanabe K. Assignment of imino proton signals of G-C base pairs and magnesium ion binding: an NMR study of bovine mitochondrial tRNA(SerGCU) lacking the entire D arm. J Biochem. 1997 Jun;121(6):1115–1122. doi: 10.1093/oxfordjournals.jbchem.a021703. [DOI] [PubMed] [Google Scholar]
  19. Helm M., Brulé H., Degoul F., Cepanec C., Leroux J. P., Giegé R., Florentz C. The presence of modified nucleotides is required for cloverleaf folding of a human mitochondrial tRNA. Nucleic Acids Res. 1998 Apr 1;26(7):1636–1643. doi: 10.1093/nar/26.7.1636. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Helm M., Giegé R., Florentz C. A Watson-Crick base-pair-disrupting methyl group (m1A9) is sufficient for cloverleaf folding of human mitochondrial tRNALys. Biochemistry. 1999 Oct 5;38(40):13338–13346. doi: 10.1021/bi991061g. [DOI] [PubMed] [Google Scholar]
  21. Horai S., Satta Y., Hayasaka K., Kondo R., Inoue T., Ishida T., Hayashi S., Takahata N. Man's place in Hominoidea revealed by mitochondrial DNA genealogy. J Mol Evol. 1992 Jul;35(1):32–43. doi: 10.1007/BF00160258. [DOI] [PubMed] [Google Scholar]
  22. Hou Y. M., Schimmel P. Functional compensation of a recognition-defective transfer RNA by a distal base pair substitution. Biochemistry. 1992 Oct 27;31(42):10310–10314. doi: 10.1021/bi00157a019. [DOI] [PubMed] [Google Scholar]
  23. Janke A., Feldmaier-Fuchs G., Thomas W. K., von Haeseler A., Päbo S. The marsupial mitochondrial genome and the evolution of placental mammals. Genetics. 1994 May;137(1):243–256. doi: 10.1093/genetics/137.1.243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Janke A., Päbo S. Editing of a tRNA anticodon in marsupial mitochondria changes its codon recognition. Nucleic Acids Res. 1993 Apr 11;21(7):1523–1525. doi: 10.1093/nar/21.7.1523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Janke A., Xu X., Arnason U. The complete mitochondrial genome of the wallaroo (Macropus robustus) and the phylogenetic relationship among Monotremata, Marsupialia, and Eutheria. Proc Natl Acad Sci U S A. 1997 Feb 18;94(4):1276–1281. doi: 10.1073/pnas.94.4.1276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kogelnik A. M., Lott M. T., Brown M. D., Navathe S. B., Wallace D. C. MITOMAP: a human mitochondrial genome database--1998 update. Nucleic Acids Res. 1998 Jan 1;26(1):112–115. doi: 10.1093/nar/26.1.112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Kumazawa Y., Himeno H., Miura K., Watanabe K. Unilateral aminoacylation specificity between bovine mitochondria and eubacteria. J Biochem. 1991 Mar;109(3):421–427. doi: 10.1093/oxfordjournals.jbchem.a123397. [DOI] [PubMed] [Google Scholar]
  28. Kumazawa Y., Nishida M. Sequence evolution of mitochondrial tRNA genes and deep-branch animal phylogenetics. J Mol Evol. 1993 Oct;37(4):380–398. doi: 10.1007/BF00178868. [DOI] [PubMed] [Google Scholar]
  29. Larsson N. G., Clayton D. A. Molecular genetic aspects of human mitochondrial disorders. Annu Rev Genet. 1995;29:151–178. doi: 10.1146/annurev.ge.29.120195.001055. [DOI] [PubMed] [Google Scholar]
  30. Lynch M. Mutation accumulation in transfer RNAs: molecular evidence for Muller's ratchet in mitochondrial genomes. Mol Biol Evol. 1996 Jan;13(1):209–220. doi: 10.1093/oxfordjournals.molbev.a025557. [DOI] [PubMed] [Google Scholar]
  31. Ma L., Spremulli L. L. Cloning and sequence analysis of the human mitochondrial translational initiation factor 2 cDNA. J Biol Chem. 1995 Jan 27;270(4):1859–1865. doi: 10.1074/jbc.270.4.1859. [DOI] [PubMed] [Google Scholar]
  32. Macey J. R., Larson A., Ananjeva N. B., Papenfuss T. J. Replication slippage may cause parallel evolution in the secondary structures of mitochondrial transfer RNAs. Mol Biol Evol. 1997 Jan;14(1):30–39. doi: 10.1093/oxfordjournals.molbev.a025699. [DOI] [PubMed] [Google Scholar]
  33. Moriya J., Yokogawa T., Wakita K., Ueda T., Nishikawa K., Crain P. F., Hashizume T., Pomerantz S. C., McCloskey J. A., Kawai G. A novel modified nucleoside found at the first position of the anticodon of methionine tRNA from bovine liver mitochondria. Biochemistry. 1994 Mar 1;33(8):2234–2239. doi: 10.1021/bi00174a033. [DOI] [PubMed] [Google Scholar]
  34. Mörl M., Dörner M., Päbo S. C to U editing and modifications during the maturation of the mitochondrial tRNA(Asp) in marsupials. Nucleic Acids Res. 1995 Sep 11;23(17):3380–3384. doi: 10.1093/nar/23.17.3380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Pesole G., Gissi C., De Chirico A., Saccone C. Nucleotide substitution rate of mammalian mitochondrial genomes. J Mol Evol. 1999 Apr;48(4):427–434. doi: 10.1007/pl00006487. [DOI] [PubMed] [Google Scholar]
  36. Pütz J., Puglisi J. D., Florentz C., Giegé R. Identity elements for specific aminoacylation of yeast tRNA(Asp) by cognate aspartyl-tRNA synthetase. Science. 1991 Jun 21;252(5013):1696–1699. doi: 10.1126/science.2047878. [DOI] [PubMed] [Google Scholar]
  37. Reichert A., Rothbauer U., Mörl M. Processing and editing of overlapping tRNAs in human mitochondria. J Biol Chem. 1998 Nov 27;273(48):31977–31984. doi: 10.1074/jbc.273.48.31977. [DOI] [PubMed] [Google Scholar]
  38. Schon E. A., Bonilla E., DiMauro S. Mitochondrial DNA mutations and pathogenesis. J Bioenerg Biomembr. 1997 Apr;29(2):131–149. doi: 10.1023/a:1022685929755. [DOI] [PubMed] [Google Scholar]
  39. Sprinzl M., Horn C., Brown M., Ioudovitch A., Steinberg S. Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res. 1998 Jan 1;26(1):148–153. doi: 10.1093/nar/26.1.148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Steinberg S., Cedergren R. Structural compensation in atypical mitochondrial tRNAs. Nat Struct Biol. 1994 Aug;1(8):507–510. doi: 10.1038/nsb0894-507. [DOI] [PubMed] [Google Scholar]
  41. Steinberg S., Gautheret D., Cedergren R. Fitting the structurally diverse animal mitochondrial tRNAs(Ser) to common three-dimensional constraints. J Mol Biol. 1994 Mar 4;236(4):982–989. doi: 10.1016/0022-2836(94)90004-3. [DOI] [PubMed] [Google Scholar]
  42. Steinberg S., Leclerc F., Cedergren R. Structural rules and conformational compensations in the tRNA L-form. J Mol Biol. 1997 Feb 21;266(2):269–282. doi: 10.1006/jmbi.1996.0803. [DOI] [PubMed] [Google Scholar]
  43. Stoesser G., Tuli M. A., Lopez R., Sterk P. The EMBL Nucleotide Sequence Database. Nucleic Acids Res. 1999 Jan 1;27(1):18–24. doi: 10.1093/nar/27.1.18. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Takemoto C., Koike T., Yokogawa T., Benkowski L., Spremulli L. L., Ueda T. A., Nishikawa K., Watanabe K. The ability of bovine mitochondrial transfer RNAMet to decode AUG and AUA codons. Biochimie. 1995;77(1-2):104–108. doi: 10.1016/0300-9084(96)88112-0. [DOI] [PubMed] [Google Scholar]
  45. Takeuchi N., Kawakami M., Omori A., Ueda T., Spremulli L. L., Watanabe K. Mammalian mitochondrial methionyl-tRNA transformylase from bovine liver. Purification, characterization, and gene structure. J Biol Chem. 1998 Jun 12;273(24):15085–15090. doi: 10.1074/jbc.273.24.15085. [DOI] [PubMed] [Google Scholar]
  46. Tiranti V., Savoia A., Forti F., D'Apolito M. F., Centra M., Rocchi M., Zeviani M. Identification of the gene encoding the human mitochondrial RNA polymerase (h-mtRPOL) by cyberscreening of the Expressed Sequence Tags database. Hum Mol Genet. 1997 Apr;6(4):615–625. doi: 10.1093/hmg/6.4.615. [DOI] [PubMed] [Google Scholar]
  47. Ueda T., Watanabe K., Ohta T. Structural analysis of bovine mitochondrial tRNASer (AGY). Nucleic Acids Symp Ser. 1983;(12):141–144. [PubMed] [Google Scholar]
  48. Ueda T., Yotsumoto Y., Ikeda K., Watanabe K. The T-loop region of animal mitochondrial tRNA(Ser)(AGY) is a main recognition site for homologous seryl-tRNA synthetase. Nucleic Acids Res. 1992 May 11;20(9):2217–2222. doi: 10.1093/nar/20.9.2217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Wakita K., Watanabe Y., Yokogawa T., Kumazawa Y., Nakamura S., Ueda T., Watanabe K., Nishikawa K. Higher-order structure of bovine mitochondrial tRNA(Phe) lacking the 'conserved' GG and T psi CG sequences as inferred by enzymatic and chemical probing. Nucleic Acids Res. 1994 Feb 11;22(3):347–353. doi: 10.1093/nar/22.3.347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Wallace D. C. Diseases of the mitochondrial DNA. Annu Rev Biochem. 1992;61:1175–1212. doi: 10.1146/annurev.bi.61.070192.005523. [DOI] [PubMed] [Google Scholar]
  51. Wallace D. C. Mitochondrial diseases in man and mouse. Science. 1999 Mar 5;283(5407):1482–1488. doi: 10.1126/science.283.5407.1482. [DOI] [PubMed] [Google Scholar]
  52. Watanabe Y., Kawai G., Yokogawa T., Hayashi N., Kumazawa Y., Ueda T., Nishikawa K., Hirao I., Miura K., Watanabe K. Higher-order structure of bovine mitochondrial tRNA(SerUGA): chemical modification and computer modeling. Nucleic Acids Res. 1994 Dec 11;22(24):5378–5384. doi: 10.1093/nar/22.24.5378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Watanabe Y., Tsurui H., Ueda T., Furushima R., Takamiya S., Kita K., Nishikawa K., Watanabe K. Primary and higher order structures of nematode (Ascaris suum) mitochondrial tRNAs lacking either the T or D stem. J Biol Chem. 1994 Sep 9;269(36):22902–22906. [PubMed] [Google Scholar]
  54. Westhof E., Dumas P., Moras D. Crystallographic refinement of yeast aspartic acid transfer RNA. J Mol Biol. 1985 Jul 5;184(1):119–145. doi: 10.1016/0022-2836(85)90048-8. [DOI] [PubMed] [Google Scholar]
  55. Wolstenholme D. R., Macfarlane J. L., Okimoto R., Clary D. O., Wahleithner J. A. Bizarre tRNAs inferred from DNA sequences of mitochondrial genomes of nematode worms. Proc Natl Acad Sci U S A. 1987 Mar;84(5):1324–1328. doi: 10.1073/pnas.84.5.1324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Wolstenholme D. R., Okimoto R., Macfarlane J. L. Nucleotide correlations that suggest tertiary interactions in the TV-replacement loop-containing mitochondrial tRNAs of the nematodes, Caenorhabditis elegans and Ascaris suum. Nucleic Acids Res. 1994 Oct 11;22(20):4300–4306. doi: 10.1093/nar/22.20.4300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Yokogawa T., Watanabe Y., Kumazawa Y., Ueda T., Hirao I., Miura K., Watanabe K. A novel cloverleaf structure found in mammalian mitochondrial tRNA(Ser) (UCN). Nucleic Acids Res. 1991 Nov 25;19(22):6101–6105. doi: 10.1093/nar/19.22.6101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Zhang Y., Spremulli L. L. Roles of residues in mammalian mitochondrial elongation factor Ts in the interaction with mitochondrial and bacterial elongation factor Tu. J Biol Chem. 1998 Oct 23;273(43):28142–28148. doi: 10.1074/jbc.273.43.28142. [DOI] [PubMed] [Google Scholar]
  59. de Bruijn M. H., Klug A. A model for the tertiary structure of mammalian mitochondrial transfer RNAs lacking the entire 'dihydrouridine' loop and stem. EMBO J. 1983;2(8):1309–1321. doi: 10.1002/j.1460-2075.1983.tb01586.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. de Bruijn M. H., Schreier P. H., Eperon I. C., Barrell B. G., Chen E. Y., Armstrong P. W., Wong J. F., Roe B. A. A mammalian mitochondrial serine transfer RNA lacking the "dihydrouridine" loop and stem. Nucleic Acids Res. 1980 Nov 25;8(22):5213–5222. doi: 10.1093/nar/8.22.5213. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES