Abstract
Brome mosaic virus (BMV) genomic minus-strand RNA synthesis requires an RNA motif named stem-loop C (SLC). An NMR-derived solution structure of SLC was reported by Kim et al. (Nature Struc Biol, 2000, 7:415-423) to contain three replicase-recognition elements, the most important of which is a stable stem with a terminal trinucleotide loop, 5'AUA3'. The 5'-most adenine of the triloop is rigidly fixed to the stem helix by interactions that require the 3'-most adenine, which is called a clamped adenine motif. However, a change of the 3' adenine to guanine (5'AUG3') unexpectedly directed RNA synthesis at 130% of wild type (Kim et al., Nature Struc Biol, 2000, 7:415-423). To understand how RNA with the AUG mutation maintains interaction with the BMV replicase, we used NMR and other biophysical techniques to elucidate the solution conformation of a 13-nt RNA containing the AUG triloop, called S-AUG. We found that S-AUG has a drastically different loop conformation in comparison to the wild type, as evidenced by an unusual C x G loop-closing base pair. Despite the conformational change, S-AUG maintains a solution-exposed adenine similar to the clamped adenine motif found in the wild type. Biochemical studies of the 5'AUG3' loop with various substitutions in the context of the whole SLC construct confirm that the clamped adenine motif exists in S-AUG remains a primary structural feature required for RNA synthesis by the BMV replicase.
Full Text
The Full Text of this article is available as a PDF (3.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aboul-ela F., Nikonowicz E. P., Pardi A. Distinguishing between duplex and hairpin forms of RNA by 15N-1H heteronuclear NMR. FEBS Lett. 1994 Jun 27;347(2-3):261–264. doi: 10.1016/0014-5793(94)00564-8. [DOI] [PubMed] [Google Scholar]
- Ahlquist P. Bromovirus RNA replication and transcription. Curr Opin Genet Dev. 1992 Feb;2(1):71–76. doi: 10.1016/s0959-437x(05)80325-9. [DOI] [PubMed] [Google Scholar]
- Ahlquist P., Dasgupta R., Kaesberg P. Near identity of 3- RNA secondary structure in bromoviruses and cucumber mosaic virus. Cell. 1981 Jan;23(1):183–189. doi: 10.1016/0092-8674(81)90283-x. [DOI] [PubMed] [Google Scholar]
- Chapman M. R., Kao C. C. A minimal RNA promoter for minus-strand RNA synthesis by the brome mosaic virus polymerase complex. J Mol Biol. 1999 Feb 26;286(3):709–720. doi: 10.1006/jmbi.1998.2503. [DOI] [PubMed] [Google Scholar]
- Dreher T. W., Hall T. C. Mutational analysis of the sequence and structural requirements in brome mosaic virus RNA for minus strand promoter activity. J Mol Biol. 1988 May 5;201(1):31–40. doi: 10.1016/0022-2836(88)90436-6. [DOI] [PubMed] [Google Scholar]
- Felden B., Florentz C., Giegé R., Westhof E. Solution structure of the 3'-end of brome mosaic virus genomic RNAs. Conformational mimicry with canonical tRNAs. J Mol Biol. 1994 Jan 14;235(2):508–531. doi: 10.1006/jmbi.1994.1010. [DOI] [PubMed] [Google Scholar]
- Jaeger J. A., Turner D. H., Zuker M. Improved predictions of secondary structures for RNA. Proc Natl Acad Sci U S A. 1989 Oct;86(20):7706–7710. doi: 10.1073/pnas.86.20.7706. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kay L. E. Field gradient techniques in NMR spectroscopy. Curr Opin Struct Biol. 1995 Oct;5(5):674–681. doi: 10.1016/0959-440x(95)80061-1. [DOI] [PubMed] [Google Scholar]
- Kim C. H., Kao C. C., Tinoco I., Jr RNA motifs that determine specificity between a viral replicase and its promoter. Nat Struct Biol. 2000 May;7(5):415–423. doi: 10.1038/75202. [DOI] [PubMed] [Google Scholar]
- Kim C. H., Kao C. C., Tinoco I., Jr RNA motifs that determine specificity between a viral replicase and its promoter. Nat Struct Biol. 2000 May;7(5):415–423. doi: 10.1038/75202. [DOI] [PubMed] [Google Scholar]
- Kim C. H., Tinoco I., Jr Structural and thermodynamic studies on mutant RNA motifs that impair the specificity between a viral replicase and its promoter. J Mol Biol. 2001 Mar 30;307(3):827–839. doi: 10.1006/jmbi.2001.4497. [DOI] [PubMed] [Google Scholar]
- Miller W. A., Bujarski J. J., Dreher T. W., Hall T. C. Minus-strand initiation by brome mosaic virus replicase within the 3' tRNA-like structure of native and modified RNA templates. J Mol Biol. 1986 Feb 20;187(4):537–546. doi: 10.1016/0022-2836(86)90332-3. [DOI] [PubMed] [Google Scholar]
- Milligan J. F., Uhlenbeck O. C. Synthesis of small RNAs using T7 RNA polymerase. Methods Enzymol. 1989;180:51–62. doi: 10.1016/0076-6879(89)80091-6. [DOI] [PubMed] [Google Scholar]
- Puglisi J. D., Tinoco I., Jr Absorbance melting curves of RNA. Methods Enzymol. 1989;180:304–325. doi: 10.1016/0076-6879(89)80108-9. [DOI] [PubMed] [Google Scholar]
- Rao A. L., Hall T. C. Recombination and polymerase error facilitate restoration of infectivity in brome mosaic virus. J Virol. 1993 Feb;67(2):969–979. doi: 10.1128/jvi.67.2.969-979.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Riesner D., Maass G., Thiebe R., Philippsen P., Zachau H. G. The conformational transitions in yeast tRNAPhe as studied with tRNAPhe fragments. Eur J Biochem. 1973 Jul 2;36(1):76–88. doi: 10.1111/j.1432-1033.1973.tb02887.x. [DOI] [PubMed] [Google Scholar]
- Rietveld K., Pleij C. W., Bosch L. Three-dimensional models of the tRNA-like 3' termini of some plant viral RNAs. EMBO J. 1983;2(7):1079–1085. doi: 10.1002/j.1460-2075.1983.tb01549.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shu Z., Bevilacqua P. C. Isolation and characterization of thermodynamically stable and unstable RNA hairpins from a triloop combinatorial library. Biochemistry. 1999 Nov 16;38(46):15369–15379. doi: 10.1021/bi991774z. [DOI] [PubMed] [Google Scholar]
- Sivakumaran K., Bao Y., Roossinck M. J., Kao C. C. Recognition of the core RNA promoter for minus-strand RNA synthesis by the replicases of Brome mosaic virus and Cucumber mosaic virus. J Virol. 2000 Nov;74(22):10323–10331. doi: 10.1128/jvi.74.22.10323-10331.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sivakumaran K., Kim C. H., Tayon R., Jr, Kao C. C. RNA sequence and secondary structural determinants in a minimal viral promoter that directs replicase recognition and initiation of genomic plus-strand RNA synthesis. J Mol Biol. 1999 Dec 3;294(3):667–682. doi: 10.1006/jmbi.1999.3297. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stawicki S. S., Kao C. C. Spatial perturbations within an RNA promoter specifically recognized by a viral RNA-dependent RNA polymerase (RdRp) reveal that RdRp can adjust its promoter binding sites. J Virol. 1999 Jan;73(1):198–204. doi: 10.1128/jvi.73.1.198-204.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Turner D. H., Sugimoto N., Freier S. M. RNA structure prediction. Annu Rev Biophys Biophys Chem. 1988;17:167–192. doi: 10.1146/annurev.bb.17.060188.001123. [DOI] [PubMed] [Google Scholar]