Abstract
Recent admixture between genetically differentiated populations can result in high levels of association between alleles at loci that are <=10 cM apart. The transmission/disequilibrium test (TDT) proposed by Spielman et al. (1993) can be a powerful test of linkage between disease and marker loci in the presence of association and therefore could be a useful test of linkage in admixed populations. The degree of association between alleles at two loci depends on the differences in allele frequencies, at the two loci, in the founding populations; therefore, the choice of marker is important. For a multiallelic marker, one strategy that may improve the power of the TDT is to group marker alleles within a locus, on the basis of information about the founding populations and the admixed population, thereby collapsing the marker into one with fewer alleles. We have examined the consequences of collapsing a microsatellite into a two-allele marker, when two founding populations are assumed for the admixed population, and have found that if there is random mating in the admixed population, then typically there is a collapsing for which the power of the TDT is greater than that for the original microsatellite marker. A method is presented for finding the optimal collapsing that has minimal dependence on the disease and that uses estimates either of marker allele frequencies in the two founding populations or of marker allele frequencies in the current, admixed population and in one of the founding populations. Furthermore, this optimal collapsing is not always the collapsing with the largest difference in allele frequencies in the founding populations. To demonstrate this strategy, we considered a recent data set, published previously, that provides frequency estimates for 30 microsatellites in 13 populations.
Full Text
The Full Text of this article is available as a PDF (302.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bodmer W. F. Human genetics: the molecular challenge. Cold Spring Harb Symp Quant Biol. 1986;51(Pt 1):1–13. doi: 10.1101/sqb.1986.051.01.003. [DOI] [PubMed] [Google Scholar]
- Briscoe D., Stephens J. C., O'Brien S. J. Linkage disequilibrium in admixed populations: applications in gene mapping. J Hered. 1994 Jan-Feb;85(1):59–63. [PubMed] [Google Scholar]
- Chakraborty R., Smouse P. E. Recombination of haplotypes leads to biased estimates of admixture proportions in human populations. Proc Natl Acad Sci U S A. 1988 May;85(9):3071–3074. doi: 10.1073/pnas.85.9.3071. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Copeman J. B., Cucca F., Hearne C. M., Cornall R. J., Reed P. W., Rønningen K. S., Undlien D. E., Nisticò L., Buzzetti R., Tosi R. Linkage disequilibrium mapping of a type 1 diabetes susceptibility gene (IDDM7) to chromosome 2q31-q33. Nat Genet. 1995 Jan;9(1):80–85. doi: 10.1038/ng0195-80. [DOI] [PubMed] [Google Scholar]
- Cox N. J., Spielman R. S. The insulin gene and susceptibility to IDDM. Genet Epidemiol. 1989;6(1):65–69. doi: 10.1002/gepi.1370060113. [DOI] [PubMed] [Google Scholar]
- Ewens W. J., Spielman R. S. The transmission/disequilibrium test: history, subdivision, and admixture. Am J Hum Genet. 1995 Aug;57(2):455–464. [PMC free article] [PubMed] [Google Scholar]
- Jorde L. B., Bamshad M. J., Watkins W. S., Zenger R., Fraley A. E., Krakowiak P. A., Carpenter K. D., Soodyall H., Jenkins T., Rogers A. R. Origins and affinities of modern humans: a comparison of mitochondrial and nuclear genetic data. Am J Hum Genet. 1995 Sep;57(3):523–538. doi: 10.1002/ajmg.1320570340. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaplan N. L., Martin E. R., Weir B. S. Power studies for the transmission/disequilibrium tests with multiple alleles. Am J Hum Genet. 1997 Mar;60(3):691–702. [PMC free article] [PubMed] [Google Scholar]
- Maiste P. J., Weir B. S. A comparison of tests for independence in the FBI RFLP data bases. Genetica. 1995;96(1-2):125–138. doi: 10.1007/BF01441158. [DOI] [PubMed] [Google Scholar]
- McKeigue P. M. Mapping genes underlying ethnic differences in disease risk by linkage disequilibrium in recently admixed populations. Am J Hum Genet. 1997 Jan;60(1):188–196. [PMC free article] [PubMed] [Google Scholar]
- Sawcer S., Jones H. B., Feakes R., Gray J., Smaldon N., Chataway J., Robertson N., Clayton D., Goodfellow P. N., Compston A. A genome screen in multiple sclerosis reveals susceptibility loci on chromosome 6p21 and 17q22. Nat Genet. 1996 Aug;13(4):464–468. doi: 10.1038/ng0896-464. [DOI] [PubMed] [Google Scholar]
- Sham P. C., Curtis D. An extended transmission/disequilibrium test (TDT) for multi-allele marker loci. Ann Hum Genet. 1995 Jul;59(Pt 3):323–336. doi: 10.1111/j.1469-1809.1995.tb00751.x. [DOI] [PubMed] [Google Scholar]
- Sheffield V. C., Weber J. L., Buetow K. H., Murray J. C., Even D. A., Wiles K., Gastier J. M., Pulido J. C., Yandava C., Sunden S. L. A collection of tri- and tetranucleotide repeat markers used to generate high quality, high resolution human genome-wide linkage maps. Hum Mol Genet. 1995 Oct;4(10):1837–1844. doi: 10.1093/hmg/4.10.1837. [DOI] [PubMed] [Google Scholar]
- Spielman R. S., Ewens W. J. The TDT and other family-based tests for linkage disequilibrium and association. Am J Hum Genet. 1996 Nov;59(5):983–989. [PMC free article] [PubMed] [Google Scholar]
- Spielman R. S., McGinnis R. E., Ewens W. J. Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am J Hum Genet. 1993 Mar;52(3):506–516. [PMC free article] [PubMed] [Google Scholar]
- Stephens J. C., Briscoe D., O'Brien S. J. Mapping by admixture linkage disequilibrium in human populations: limits and guidelines. Am J Hum Genet. 1994 Oct;55(4):809–824. [PMC free article] [PubMed] [Google Scholar]
- Terwilliger J. D. A powerful likelihood method for the analysis of linkage disequilibrium between trait loci and one or more polymorphic marker loci. Am J Hum Genet. 1995 Mar;56(3):777–787. [PMC free article] [PubMed] [Google Scholar]
- Weir B. S. Independence of VNTR alleles defined as fixed bins. Genetics. 1992 Apr;130(4):873–887. doi: 10.1093/genetics/130.4.873. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yuan B., Vaske D., Weber J. L., Beck J., Sheffield V. C. Improved set of short-tandem-repeat polymorphisms for screening the human genome. Am J Hum Genet. 1997 Feb;60(2):459–460. [PMC free article] [PubMed] [Google Scholar]