Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1998 Mar;62(3):641–652. doi: 10.1086/301767

Localization of the fourth locus (GLC1E) for adult-onset primary open-angle glaucoma to the 10p15-p14 region.

M Sarfarazi 1, A Child 1, D Stoilova 1, G Brice 1, T Desai 1, O C Trifan 1, D Poinoosawmy 1, R P Crick 1
PMCID: PMC1376961  PMID: 9497264

Abstract

One of the major causes of blindness is primary open-angle glaucoma, which affects millions of elderly people worldwide. Genetic studies have so far mapped three loci for the adult-onset form of this condition to the 2cen-q13, 3q21-q24, and 8q23 regions. Herein, we report the localization of a fourth locus, to the 10p15-p14 region, in one large British family with a classical form of normal-tension open-angle glaucoma. Of the 42 meioses genotyped in this pedigree, 39 subjects (16 affected) inherited a haplotype compatible with their prior clinical designation, whereas the remaining 3 were classified as unknown. Although a maximum LOD score of 10.00 at a recombination fraction of straight theta=.00 was obtained with D10S1216, 21 other markers provided significant values, varying between 3.77 and 9.70. When only the affected meioses of this kindred were analyzed, LOD scores remained statistically significant, ranging from 3.16 (D10S527) to 3.57 (D10S506). Two critical recombinational events in the affected subjects positioned this new locus to a region of approximately 21 cM, flanked by D10S1729 and D10S1664. However, an additional recombination in a 59-year-old unaffected female suggests that this locus resides between D10S585 (or D10S1172) and D10S1664, within a genetic distance of 5-11 cM. However, the latter minimum region must be taken cautiously, because the incomplete penetrance has previously been documented for this group of eye conditions. A partial list of genes that positionally are considered as candidates includes NET1, PRKCT, ITIH2, IL2RA, IL15RA, IT1H2, hGATA3, the mRNA for open reading frame KIAA0019, and the gene for D123 protein.

Full Text

The Full Text of this article is available as a PDF (818.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adam M. F., Belmouden A., Binisti P., Brézin A. P., Valtot F., Béchetoille A., Dascotte J. C., Copin B., Gomez L., Chaventré A. Recurrent mutations in a single exon encoding the evolutionarily conserved olfactomedin-homology domain of TIGR in familial open-angle glaucoma. Hum Mol Genet. 1997 Nov;6(12):2091–2097. doi: 10.1093/hmg/6.12.2091. [DOI] [PubMed] [Google Scholar]
  2. Akarsu A. N., Turacli M. E., Aktan S. G., Barsoum-Homsy M., Chevrette L., Sayli B. S., Sarfarazi M. A second locus (GLC3B) for primary congenital glaucoma (Buphthalmos) maps to the 1p36 region. Hum Mol Genet. 1996 Aug;5(8):1199–1203. doi: 10.1093/hmg/5.8.1199. [DOI] [PubMed] [Google Scholar]
  3. Avramopoulos D., Kitsos G., Economou-Petersen E., Grigoriadou M., Vassilopoulos D., Papageorgiou C., Psilas K., Petersen M. B. Exclusion of one pedigree affected by adult onset primary open angle glaucoma from linkage to the juvenile glaucoma locus on chromosome 1q21-q31. J Med Genet. 1996 Dec;33(12):1043–1044. doi: 10.1136/jmg.33.12.1043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baez K. A., McNaught A. I., Dowler J. G., Poinoosawmy D., Fitzke F. W., Hitchings R. A. Motion detection threshold and field progression in normal tension glaucoma. Br J Ophthalmol. 1995 Feb;79(2):125–128. doi: 10.1136/bjo.79.2.125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bassam B. J., Caetano-Anollés G., Gresshoff P. M. Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem. 1991 Jul;196(1):80–83. doi: 10.1016/0003-2697(91)90120-i. [DOI] [PubMed] [Google Scholar]
  6. Bennett S. R., Alward W. L., Folberg R. An autosomal dominant form of low-tension glaucoma. Am J Ophthalmol. 1989 Sep 15;108(3):238–244. doi: 10.1016/0002-9394(89)90112-8. [DOI] [PubMed] [Google Scholar]
  7. Crick R. P. Chronic glaucoma: a preventable cause of blindness. Lancet. 1974 Feb 9;1(7850):205–207. [PubMed] [Google Scholar]
  8. Dib C., Fauré S., Fizames C., Samson D., Drouot N., Vignal A., Millasseau P., Marc S., Hazan J., Seboun E. A comprehensive genetic map of the human genome based on 5,264 microsatellites. Nature. 1996 Mar 14;380(6570):152–154. doi: 10.1038/380152a0. [DOI] [PubMed] [Google Scholar]
  9. Dreher A. W., Tso P. C., Weinreb R. N. Reproducibility of topographic measurements of the normal and glaucomatous optic nerve head with the laser tomographic scanner. Am J Ophthalmol. 1991 Feb 15;111(2):221–229. doi: 10.1016/s0002-9394(14)72263-9. [DOI] [PubMed] [Google Scholar]
  10. Dryja T. P., Li T. Molecular genetics of retinitis pigmentosa. Hum Mol Genet. 1995;4(Spec No):1739–1743. doi: 10.1093/hmg/4.suppl_1.1739. [DOI] [PubMed] [Google Scholar]
  11. Fasman K. H., Cuticchia A. J., Kingsbury D. T. The GDB Human Genome Data Base anno 1994. Nucleic Acids Res. 1994 Sep;22(17):3462–3469. doi: 10.1093/nar/22.17.3462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fitzke F. W., Hitchings R. A., Poinoosawmy D., McNaught A. I., Crabb D. P. Analysis of visual field progression in glaucoma. Br J Ophthalmol. 1996 Jan;80(1):40–48. doi: 10.1136/bjo.80.1.40. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. François J. Genetics and primary open-angle glaucoma. Am J Ophthalmol. 1966 Apr;61(4):652–665. doi: 10.1016/0002-9394(66)91201-3. [DOI] [PubMed] [Google Scholar]
  14. Gebhard W., Schreitmüller T., Hochstrasser K., Wachter E. Complementary DNA and derived amino acid sequence of the precursor of one of the three protein components of the inter-alpha-trypsin inhibitor complex. FEBS Lett. 1988 Feb 29;229(1):63–67. doi: 10.1016/0014-5793(88)80798-1. [DOI] [PubMed] [Google Scholar]
  15. Grosskreutz C., Netland P. A. Low-tension glaucoma. Int Ophthalmol Clin. 1994 Summer;34(3):173–185. doi: 10.1097/00004397-199403430-00016. [DOI] [PubMed] [Google Scholar]
  16. Hitchings R. A. Low tension glaucoma--its place in modern glaucoma practice. Br J Ophthalmol. 1992 Aug;76(8):494–496. doi: 10.1136/bjo.76.8.494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hudson T. J., Stein L. D., Gerety S. S., Ma J., Castle A. B., Silva J., Slonim D. K., Baptista R., Kruglyak L., Xu S. H. An STS-based map of the human genome. Science. 1995 Dec 22;270(5244):1945–1954. doi: 10.1126/science.270.5244.1945. [DOI] [PubMed] [Google Scholar]
  18. Jay B., Paterson G. The genetics of simple glaucoma. Trans Ophthalmol Soc U K. 1970;90:161–171. [PubMed] [Google Scholar]
  19. Johnson C. A., Adams A. J., Casson E. J., Brandt J. D. Blue-on-yellow perimetry can predict the development of glaucomatous visual field loss. Arch Ophthalmol. 1993 May;111(5):645–650. doi: 10.1001/archopht.1993.01090050079034. [DOI] [PubMed] [Google Scholar]
  20. Kobayashi H., Gotoh J., Hirashima Y., Terao T. Inter-alpha-trypsin inhibitor bound to tumor cells is cleaved into the heavy chains and the light chain on the cell surface. J Biol Chem. 1996 May 10;271(19):11362–11367. doi: 10.1074/jbc.271.19.11362. [DOI] [PubMed] [Google Scholar]
  21. Korth M., Horn F., Jonas J. Utility of the color pattern-electroretinogram (PERG) in glaucoma. Graefes Arch Clin Exp Ophthalmol. 1993 Feb;231(2):84–89. doi: 10.1007/BF00920218. [DOI] [PubMed] [Google Scholar]
  22. Lathrop G. M., Lalouel J. M. Easy calculations of lod scores and genetic risks on small computers. Am J Hum Genet. 1984 Mar;36(2):460–465. [PMC free article] [PubMed] [Google Scholar]
  23. Leske M. C. The epidemiology of open-angle glaucoma: a review. Am J Epidemiol. 1983 Aug;118(2):166–191. doi: 10.1093/oxfordjournals.aje.a113626. [DOI] [PubMed] [Google Scholar]
  24. Lichter P. R. Genetic clues to glaucoma's secrets. The L Edward Jackson Memorial Lecture. Part 2. Am J Ophthalmol. 1994 Jun 15;117(6):706–727. doi: 10.1016/s0002-9394(14)70314-9. [DOI] [PubMed] [Google Scholar]
  25. Netland P. A., Wiggs J. L., Dreyer E. B. Inheritance of glaucoma and genetic counseling of glaucoma patients. Int Ophthalmol Clin. 1993 Spring;33(2):101–120. doi: 10.1097/00004397-199303320-00011. [DOI] [PubMed] [Google Scholar]
  26. Quigley H. A. Open-angle glaucoma. N Engl J Med. 1993 Apr 15;328(15):1097–1106. doi: 10.1056/NEJM199304153281507. [DOI] [PubMed] [Google Scholar]
  27. Quigley H. A., Vitale S. Models of open-angle glaucoma prevalence and incidence in the United States. Invest Ophthalmol Vis Sci. 1997 Jan;38(1):83–91. [PubMed] [Google Scholar]
  28. Raymond V. Molecular genetics of the glaucomas: mapping of the first five "GLC" loci. Am J Hum Genet. 1997 Feb;60(2):272–277. [PMC free article] [PubMed] [Google Scholar]
  29. Richards J. E., Lichter P. R., Herman S., Hauser E. R., Hou Y. C., Johnson A. T., Boehnke M. Probable exclusion of GLC1A as a candidate glaucoma gene in a family with middle-age-onset primary open-angle glaucoma. Ophthalmology. 1996 Jul;103(7):1035–1040. doi: 10.1016/s0161-6420(96)30570-8. [DOI] [PubMed] [Google Scholar]
  30. Sarfarazi M., Akarsu A. N., Hossain A., Turacli M. E., Aktan S. G., Barsoum-Homsy M., Chevrette L., Sayli B. S. Assignment of a locus (GLC3A) for primary congenital glaucoma (Buphthalmos) to 2p21 and evidence for genetic heterogeneity. Genomics. 1995 Nov 20;30(2):171–177. doi: 10.1006/geno.1995.9888. [DOI] [PubMed] [Google Scholar]
  31. Sarfarazi M. Recent advances in molecular genetics of glaucomas. Hum Mol Genet. 1997;6(10):1667–1677. doi: 10.1093/hmg/6.10.1667. [DOI] [PubMed] [Google Scholar]
  32. Schäffer A. A., Gupta S. K., Shriram K., Cottingham R. W., Jr Avoiding recomputation in linkage analysis. Hum Hered. 1994 Jul-Aug;44(4):225–237. doi: 10.1159/000154222. [DOI] [PubMed] [Google Scholar]
  33. Sheffield V. C., Stone E. M., Alward W. L., Drack A. V., Johnson A. T., Streb L. M., Nichols B. E. Genetic linkage of familial open angle glaucoma to chromosome 1q21-q31. Nat Genet. 1993 May;4(1):47–50. doi: 10.1038/ng0593-47. [DOI] [PubMed] [Google Scholar]
  34. Sheffield V. C., Weber J. L., Buetow K. H., Murray J. C., Even D. A., Wiles K., Gastier J. M., Pulido J. C., Yandava C., Sunden S. L. A collection of tri- and tetranucleotide repeat markers used to generate high quality, high resolution human genome-wide linkage maps. Hum Mol Genet. 1995 Oct;4(10):1837–1844. doi: 10.1093/hmg/4.10.1837. [DOI] [PubMed] [Google Scholar]
  35. Stoilov I., Akarsu A. N., Alozie I., Child A., Barsoum-Homsy M., Turacli M. E., Or M., Lewis R. A., Ozdemir N., Brice G. Sequence analysis and homology modeling suggest that primary congenital glaucoma on 2p21 results from mutations disrupting either the hinge region or the conserved core structures of cytochrome P4501B1. Am J Hum Genet. 1998 Mar;62(3):573–584. doi: 10.1086/301764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Stoilov I., Akarsu A. N., Sarfarazi M. Identification of three different truncating mutations in cytochrome P4501B1 (CYP1B1) as the principal cause of primary congenital glaucoma (Buphthalmos) in families linked to the GLC3A locus on chromosome 2p21. Hum Mol Genet. 1997 Apr;6(4):641–647. doi: 10.1093/hmg/6.4.641. [DOI] [PubMed] [Google Scholar]
  37. Stoilova D., Child A., Brice G., Crick R. P., Fleck B. W., Sarfarazi M. Identification of a new 'TIGR' mutation in a family with juvenile-onset primary open angle glaucoma. Ophthalmic Genet. 1997 Sep;18(3):109–118. doi: 10.3109/13816819709057124. [DOI] [PubMed] [Google Scholar]
  38. Stoilova D., Child A., Trifan O. C., Crick R. P., Coakes R. L., Sarfarazi M. Localization of a locus (GLC1B) for adult-onset primary open angle glaucoma to the 2cen-q13 region. Genomics. 1996 Aug 15;36(1):142–150. doi: 10.1006/geno.1996.0434. [DOI] [PubMed] [Google Scholar]
  39. Stone E. M., Fingert J. H., Alward W. L., Nguyen T. D., Polansky J. R., Sunden S. L., Nishimura D., Clark A. F., Nystuen A., Nichols B. E. Identification of a gene that causes primary open angle glaucoma. Science. 1997 Jan 31;275(5300):668–670. doi: 10.1126/science.275.5300.668. [DOI] [PubMed] [Google Scholar]
  40. Thylefors B., Négrel A. D. The global impact of glaucoma. Bull World Health Organ. 1994;72(3):323–326. [PMC free article] [PubMed] [Google Scholar]
  41. Tielsch J. M., Sommer A., Katz J., Royall R. M., Quigley H. A., Javitt J. Racial variations in the prevalence of primary open-angle glaucoma. The Baltimore Eye Survey. JAMA. 1991 Jul 17;266(3):369–374. [PubMed] [Google Scholar]
  42. Weinreb R. N., Dreher A. W., Bille J. F. Quantitative assessment of the optic nerve head with the laser tomographic scanner. Int Ophthalmol. 1989 Jan;13(1-2):25–29. doi: 10.1007/BF02028633. [DOI] [PubMed] [Google Scholar]
  43. Wirtz M. K., Samples J. R., Kramer P. L., Rust K., Topinka J. R., Yount J., Koler R. D., Acott T. S. Mapping a gene for adult-onset primary open-angle glaucoma to chromosome 3q. Am J Hum Genet. 1997 Feb;60(2):296–304. [PMC free article] [PubMed] [Google Scholar]
  44. Yu T. C., Falcao-Reis F., Spileers W., Arden G. B. Peripheral color contrast. A new screening test for preglaucomatous visual loss. Invest Ophthalmol Vis Sci. 1991 Sep;32(10):2779–2789. [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES