Skip to main content
Immunology logoLink to Immunology
. 1994 Sep;83(1):128–132.

Dendritic cells of the oral mucosa and the induction of oral tolerance. A local affair.

E J Van Wilsem 1, I M Van Hoogstraten 1, J Brevé 1, R J Scheper 1, G Kraal 1
PMCID: PMC1415022  PMID: 7821957

Abstract

The oral mucosa is an important site to induce immunological tolerance to protein antigens. Previously we have established that oral contacts to allergen can lead to systemic tolerance in both humans and experimental animals. Because of the importance of tolerance induction as a possible way to modulate allergic reactivity, we wished to study the mechanisms involved in efficient tolerance induction via the oral mucosa. Dendritic Langerhans' cells in both skin and oral epithelium are the first cells to encounter antigen. Therefore, possible functional differences between Langerhans' cells from skin and oral mucosa were studied by migration and transfer experiments. It was found that dendritic cells derived from the oral mucosa were not able to transfer tolerance, but that they acted as antigen-presenting cells in sensu stricto irrespective of the source and route of antigen administration.

Full text

PDF
128

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bhattacharya A., Dorf M. E., Springer T. A. A shared alloantigenic determinant on Ia antigens encoded by the I-A and I-E subregions: evidence for I region gene duplication. J Immunol. 1981 Dec;127(6):2488–2495. [PubMed] [Google Scholar]
  2. Daynes R. A., Araneo B. A., Dowell T. A., Huang K., Dudley D. Regulation of murine lymphokine production in vivo. III. The lymphoid tissue microenvironment exerts regulatory influences over T helper cell function. J Exp Med. 1990 Apr 1;171(4):979–996. doi: 10.1084/jem.171.4.979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Gautam S. C., Battisto J. R. Orally induced tolerance generates an efferently acting suppressor T cell and an acceptor T cell that together down-regulate contact sensitivity. J Immunol. 1985 Nov;135(5):2975–2983. [PubMed] [Google Scholar]
  4. Gautam S. C., Chikkala N. F., Battisto J. R. Oral administration of the contact sensitizer trinitrochlorobenzene: initial sensitization and subsequent appearance of a suppressor population. Cell Immunol. 1990 Feb;125(2):437–448. doi: 10.1016/0008-8749(90)90097-b. [DOI] [PubMed] [Google Scholar]
  5. Holt P. G., Vines J., Britten D. Sublingual allergen administration. I. Selective suppression of IgE production in rats by high allergen doses. Clin Allergy. 1988 May;18(3):229–234. doi: 10.1111/j.1365-2222.1988.tb02864.x. [DOI] [PubMed] [Google Scholar]
  6. Hoyne G. F., O'Hehir R. E., Wraith D. C., Thomas W. R., Lamb J. R. Inhibition of T cell and antibody responses to house dust mite allergen by inhalation of the dominant T cell epitope in naive and sensitized mice. J Exp Med. 1993 Nov 1;178(5):1783–1788. doi: 10.1084/jem.178.5.1783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Khoury S. J., Hancock W. W., Weiner H. L. Oral tolerance to myelin basic protein and natural recovery from experimental autoimmune encephalomyelitis are associated with downregulation of inflammatory cytokines and differential upregulation of transforming growth factor beta, interleukin 4, and prostaglandin E expression in the brain. J Exp Med. 1992 Nov 1;176(5):1355–1364. doi: 10.1084/jem.176.5.1355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kinnaird A., Peters S. W., Foster J. R., Kimber I. Dendritic cell accumulation in draining lymph nodes during the induction phase of contact allergy in mice. Int Arch Allergy Appl Immunol. 1989;89(2-3):202–210. doi: 10.1159/000234947. [DOI] [PubMed] [Google Scholar]
  9. Knight S. C., Krejci J., Malkovsky M., Colizzi V., Gautam A., Asherson G. L. The role of dendritic cells in the initiation of immune responses to contact sensitizers. I. In vivo exposure to antigen. Cell Immunol. 1985 Sep;94(2):427–434. doi: 10.1016/0008-8749(85)90266-7. [DOI] [PubMed] [Google Scholar]
  10. Kraal G., van Wilsem E., Brevé J. The phenotype of murine Langerhans cells from skin to lymph node. In Vivo. 1993 May-Jun;7(3):203–206. [PubMed] [Google Scholar]
  11. Kripke M. L., Munn C. G., Jeevan A., Tang J. M., Bucana C. Evidence that cutaneous antigen-presenting cells migrate to regional lymph nodes during contact sensitization. J Immunol. 1990 Nov 1;145(9):2833–2838. [PubMed] [Google Scholar]
  12. Liu L. M., MacPherson G. G. Antigen acquisition by dendritic cells: intestinal dendritic cells acquire antigen administered orally and can prime naive T cells in vivo. J Exp Med. 1993 May 1;177(5):1299–1307. doi: 10.1084/jem.177.5.1299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. MacDonald T. T. Immunosuppression caused by antigen feeding II. Suppressor T cells mask Peyer's patch B cell priming to orally administered antigen. Eur J Immunol. 1983 Feb;13(2):138–142. doi: 10.1002/eji.1830130209. [DOI] [PubMed] [Google Scholar]
  14. Macatonia S. E., Knight S. C., Edwards A. J., Griffiths S., Fryer P. Localization of antigen on lymph node dendritic cells after exposure to the contact sensitizer fluorescein isothiocyanate. Functional and morphological studies. J Exp Med. 1987 Dec 1;166(6):1654–1667. doi: 10.1084/jem.166.6.1654. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Melamed D., Friedman A. Direct evidence for anergy in T lymphocytes tolerized by oral administration of ovalbumin. Eur J Immunol. 1993 Apr;23(4):935–942. doi: 10.1002/eji.1830230426. [DOI] [PubMed] [Google Scholar]
  16. Miller S. D., Hanson D. G. Inhibition of specific immune responses by feeding protein antigens. IV. Evidence for tolerance and specific active suppression of cell-mediated immune responses to ovalbumin. J Immunol. 1979 Nov;123(5):2344–2350. [PubMed] [Google Scholar]
  17. Mowat A. M., Lamont A. G., Parrott D. M. Suppressor T cells, antigen-presenting cells and the role of I-J restriction in oral tolerance to ovalbumin. Immunology. 1988 May;64(1):141–145. [PMC free article] [PubMed] [Google Scholar]
  18. Rittman B. R., Hill M. W., Rittman G. A., Mackenzie I. C. Age-associated changes in Langerhans cells of murine oral epithelium and epidermis. Arch Oral Biol. 1987;32(12):885–889. doi: 10.1016/0003-9969(87)90102-6. [DOI] [PubMed] [Google Scholar]
  19. Rubin D., Weiner H. L., Fields B. N., Greene M. I. Immunologic tolerance after oral administration of reovirus: requirement for two viral gene products for tolerance induction. J Immunol. 1981 Oct;127(4):1697–1701. [PubMed] [Google Scholar]
  20. Silberberg I., Baer R. L., Rosenthal S. A., Thorbecke G. J., Berezowsky V. Dermal and intravascular Langerhans cells at sites of passively induced allergic contact sensitivity. Cell Immunol. 1975 Aug;18(2):435–453. doi: 10.1016/0008-8749(75)90071-4. [DOI] [PubMed] [Google Scholar]
  21. Van Hoogstraten I. M., Andersen K. E., Von Blomberg B. M., Boden D., Bruynzeel D. P., Burrows D., Camarasa J. G., Dooms-Goossens A., Kraal G., Lahti A. Reduced frequency of nickel allergy upon oral nickel contact at an early age. Clin Exp Immunol. 1991 Sep;85(3):441–445. doi: 10.1111/j.1365-2249.1991.tb05746.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. van Hoogstraten I. M., Boden D., von Blomberg M. E., Kraal G., Scheper R. J. Persistent immune tolerance to nickel and chromium by oral administration prior to cutaneous sensitization. J Invest Dermatol. 1992 Nov;99(5):608–616. doi: 10.1111/1523-1747.ep12668010. [DOI] [PubMed] [Google Scholar]

Articles from Immunology are provided here courtesy of British Society for Immunology

RESOURCES