Abstract
The oxidative O-de-ethylation and aromatic 2-hydroxylation of phenacetin have been investigated in panels of extensive (EM, n = 13) and poor (PM, n = 10) metabolizers of debrisoquine. The EM group excreted in the urine significantly more paracetamol (EM: 40.8 +/- 14.9% dose/0-8 h; PM: 29.2 +/- 8.7% dose/0-8 h, 2P less than 0.05) and significantly less 2-hydroxylated metabolites (EM: 4.7 +/- 2.3% dose/0-8 h; PM: 9.7 +/- 3.5% dose/0-8 h, 2P less than 0.005) than the PM group. Apparent first-order rate constants, calculated from pooled phenotype data, for overall elimination of phenacetin (k) and formation of paracetamol (kml) were higher in the EM group (EM: k = 0.191 +/- 0.151 h-1; kml = 0.091 +/- 0.025 h-1; PM: k = 0.098 +/- 0.035 h-1, 2P less than 0.05, kml = 0.052 +/- 0.019 h-1, 2P less than 0.05) than the PM group. The apparent first-order rate constant for 2-hydroxylation displayed no significant inter-phenotype differences. Correlation analysis demonstrated that genetically determined oxidation status accounted for approximately 50% of the inter-individual variability in phenacetin disposition encountered in this study.
Full text
PDF









Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ASK-UPMARK E. Migraine as a deadly disease. Br Med J. 1960 Sep 17;2(5202):823–825. doi: 10.1136/bmj.2.5202.823. [DOI] [PMC free article] [PubMed] [Google Scholar]
- B4uch H., Gerhards W., Pfleger K., Rüdiger W., Rummel W. Metabolische Umwandlung von Phenacetin und N-Acetyl-p-aminophenol nach Vorbehandlung mit Phenobarbital. Biochem Pharmacol. 1967 Aug;16(8):1585–1599. doi: 10.1016/0006-2952(67)90137-2. [DOI] [PubMed] [Google Scholar]
- Bertilsson L., Dengler H. J., Eichelbaum M., Schulz H. U. Pharmacogenetic covariation of defective N-oxidation of sparteine and 4-hydroxylation of debrisoquine. Eur J Clin Pharmacol. 1980 Feb;17(2):153–155. doi: 10.1007/BF00562624. [DOI] [PubMed] [Google Scholar]
- Büch H., Gerhards W., Karachristianidis G., Pfleger K., Rummel W. Hemmung der durch Phenacetin und p-Phenetidin verursachten Methämoglobin-Bildung durch Barbiturate. Biochem Pharmacol. 1967 Aug;16(8):1575–1583. doi: 10.1016/0006-2952(67)90136-0. [DOI] [PubMed] [Google Scholar]
- Conney A. H., Pantuck E. J., Hsiao K. C., Garland W. A., Anderson K. E., Alvares A. P., Kappas A. Enhanced phenacetin metabolism in human subjects fed charcoal-broiled beef. Clin Pharmacol Ther. 1976 Dec;20(6):633–642. doi: 10.1002/cpt1976206633. [DOI] [PubMed] [Google Scholar]
- Cummings A. J., King M. L., Martin B. K. A kinetic study of drug elimination: the excretion of paracetamol and its metabolites in man. Br J Pharmacol Chemother. 1967 Feb;29(2):150–157. doi: 10.1111/j.1476-5381.1967.tb01948.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cummings A. J., Martin B. K., Park G. S. Kinetic considerations relating to the accrual and elimination of drug metabolites. Br J Pharmacol Chemother. 1967 Feb;29(2):136–149. doi: 10.1111/j.1476-5381.1967.tb01947.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davies D. S., Kahn G. C., Murray S., Brodie M. J., Boobis A. R. Evidence for an enzymatic defect in the 4-hydroxylation of debrisoquine by human liver. Br J Clin Pharmacol. 1981 Jan;11(1):89–91. doi: 10.1111/j.1365-2125.1981.tb01108.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Evans D. A., Mahgoub A., Sloan T. P., Idle J. R., Smith R. L. A family and population study of the genetic polymorphism of debrisoquine oxidation in a white British population. J Med Genet. 1980 Apr;17(2):102–105. doi: 10.1136/jmg.17.2.102. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jaffé E. R. Oxidative hemolysis, or "what made the red cell break"? N Engl J Med. 1972 Jan 20;286(3):156–157. doi: 10.1056/NEJM197201202860311. [DOI] [PubMed] [Google Scholar]
- Kitchen I., Tremblay J., André J., Dring L. G., Idle J. R., Smith R. L., Williams R. T. Interindividual and interspecies variation in the metabolism of the hallucinogen 4-methoxyamphetamine. Xenobiotica. 1979 Jul;9(7):397–404. doi: 10.3109/00498257909038744. [DOI] [PubMed] [Google Scholar]
- Mahgoub A., Idle J. R., Dring L. G., Lancaster R., Smith R. L. Polymorphic hydroxylation of Debrisoquine in man. Lancet. 1977 Sep 17;2(8038):584–586. doi: 10.1016/s0140-6736(77)91430-1. [DOI] [PubMed] [Google Scholar]
- Martin B. K. Drug urinary excretion data--some aspects concerning the interpretation. Br J Pharmacol Chemother. 1967 Feb;29(2):181–193. doi: 10.1111/j.1476-5381.1967.tb01951.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murray R. M. Genesis of analgesic nephropathy in the United Kingdom. Kidney Int. 1978 Jan;13(1):50–57. doi: 10.1038/ki.1978.7. [DOI] [PubMed] [Google Scholar]
- Nery R. Some new aspects of the metabolism of phenacetin in the rat. Biochem J. 1971 Apr;122(3):317–326. doi: 10.1042/bj1220317. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nordenfelt O. Deaths from renal failure in abusers of phenacetin-containing drugs. Acta Med Scand. 1972 Jan-Feb;191(1-2):11–16. [PubMed] [Google Scholar]
- POLI M. Néphropathie médicale bilatérale familiale à évolution chronique. Helv Med Acta. 1955 May;22(2):109–122. [PubMed] [Google Scholar]
- Pantuck E. J., Hsiao K. C., Loub W. D., Wattenberg L. W., Kuntzman R., Conney A. H. Stimulatory effect of vegetables on intestinal drug metabolism in the rat. J Pharmacol Exp Ther. 1976 Aug;198(2):278–283. [PubMed] [Google Scholar]
- Pantuck E. J., Hsiao K. C., Maggio A., Nakamura K., Kuntzman R., Conney A. H. Effect of cigarette smoking on phenacetin metabolism. Clin Pharmacol Ther. 1974 Jan;15(1):9–17. doi: 10.1002/cpt19741519. [DOI] [PubMed] [Google Scholar]
- Raaflaub J., Dubach U. C. Dose-dependent change in the pattern of phenacetin metabolism in man and its possible significance in analgesic nephropathy. Klin Wochenschr. 1969 Dec 1;47(23):1286–1287. doi: 10.1007/BF01487561. [DOI] [PubMed] [Google Scholar]
- Raaflaub J., Dubach U. C. On the pharmacokinetics of phenacetin in man. Eur J Clin Pharmacol. 1975 Apr 4;8(3-4):261–265. doi: 10.1007/BF00567125. [DOI] [PubMed] [Google Scholar]
- Shah R. R., Oates N. S., Idle J. R., Smith R. L. Genetic impairment of phenformin metabolism. Lancet. 1980 May 24;1(8178):1147–1147. doi: 10.1016/s0140-6736(80)91604-9. [DOI] [PubMed] [Google Scholar]
- Shahidi N. T., Hemaidan A. Acetophenetidin-induced methemoglobinemia and its relation to the excretion of diazotizable amines. J Lab Clin Med. 1969 Oct;74(4):581–585. [PubMed] [Google Scholar]
- Shively C. A., Vesell E. S. Temporal variations in acetaminophen and phenacetin half-life in man. Clin Pharmacol Ther. 1975 Oct;18(4):413–424. doi: 10.1002/cpt1975184413. [DOI] [PubMed] [Google Scholar]
- Sloan T. P., Idle J. R., Smith R. L. Influence of DH/DL alleles regulating debrisoquine oxidation on phenytoin hydroxylation. Clin Pharmacol Ther. 1981 Apr;29(4):493–497. doi: 10.1038/clpt.1981.68. [DOI] [PubMed] [Google Scholar]
- Sloan T. P., Mahgoub A., Lancaster R., Idle J. R., Smith R. L. Polymorphism of carbon oxidation of drugs and clinical implications. Br Med J. 1978 Sep 2;2(6138):655–657. doi: 10.1136/bmj.2.6138.655. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thomas B. H., Coldwell B. B., Zeitz W., Solomonraj G. Effect of aspirin, caffeine, and codeine on the metabolism of phenacetin and acetaminophen. Clin Pharmacol Ther. 1972 Nov-Dec;13(6):906–910. doi: 10.1002/cpt1972136906. [DOI] [PubMed] [Google Scholar]