Abstract
A novel fine structure mapping method for quantitative traits is presented. It is based on Bayesian modeling and inference, treating the number of quantitative trait loci (QTLs) as an unobserved random variable and using ideas similar to composite interval mapping to account for the effects of QTLs in other chromosomes. The method is introduced for inbred lines and it can be applied also in situations involving frequent missing genotypes. We propose that two new probabilistic measures be used to summarize the results from the statistical analysis: (1) the (posterior) QTL intensity, for estimating the number of QTLs in a chromosome and for localizing them into some particular chromosomal regions, and (2) the locationwise (posterior) distributions of the phenotypic effects of the QTLs. Both these measures will be viewed as functions of the putative QTL locus, over the marker range in the linkage group. The method is tested and compared with standard interval and composite interval mapping techniques by using simulated backcross progeny data. It is implemented as a software package. Its initial version is freely available for research purposes under the name Multimapper at URL http://www.rni.helsinki.fi/mjs.
Full Text
The Full Text of this article is available as a PDF (350.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Churchill G. A., Doerge R. W. Empirical threshold values for quantitative trait mapping. Genetics. 1994 Nov;138(3):963–971. doi: 10.1093/genetics/138.3.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guo S. W., Thompson E. A. A Monte Carlo method for combined segregation and linkage analysis. Am J Hum Genet. 1992 Nov;51(5):1111–1126. [PMC free article] [PubMed] [Google Scholar]
- Hackett C. A., Weller J. I. Genetic mapping of quantitative trait loci for traits with ordinal distributions. Biometrics. 1995 Dec;51(4):1252–1263. [PubMed] [Google Scholar]
- Haley C. S., Knott S. A. A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity (Edinb) 1992 Oct;69(4):315–324. doi: 10.1038/hdy.1992.131. [DOI] [PubMed] [Google Scholar]
- Haley C. S., Knott S. A., Elsen J. M. Mapping quantitative trait loci in crosses between outbred lines using least squares. Genetics. 1994 Mar;136(3):1195–1207. doi: 10.1093/genetics/136.3.1195. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jansen R. C. A general Monte Carlo method for mapping multiple quantitative trait loci. Genetics. 1996 Jan;142(1):305–311. doi: 10.1093/genetics/142.1.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jansen R. C. Interval mapping of multiple quantitative trait loci. Genetics. 1993 Sep;135(1):205–211. doi: 10.1093/genetics/135.1.205. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jansen R. C., Stam P. High resolution of quantitative traits into multiple loci via interval mapping. Genetics. 1994 Apr;136(4):1447–1455. doi: 10.1093/genetics/136.4.1447. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kruglyak L., Lander E. S. A nonparametric approach for mapping quantitative trait loci. Genetics. 1995 Mar;139(3):1421–1428. doi: 10.1093/genetics/139.3.1421. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lander E. S., Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics. 1989 Jan;121(1):185–199. doi: 10.1093/genetics/121.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Satagopan J. M., Yandell B. S., Newton M. A., Osborn T. C. A bayesian approach to detect quantitative trait loci using Markov chain Monte Carlo. Genetics. 1996 Oct;144(2):805–816. doi: 10.1093/genetics/144.2.805. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stephens D. A., Smith A. F. Bayesian inference in multipoint gene mapping. Ann Hum Genet. 1993 Jan;57(Pt 1):65–82. doi: 10.1111/j.1469-1809.1993.tb00887.x. [DOI] [PubMed] [Google Scholar]
- Tanksley S. D. Mapping polygenes. Annu Rev Genet. 1993;27:205–233. doi: 10.1146/annurev.ge.27.120193.001225. [DOI] [PubMed] [Google Scholar]
- Thomas D. C., Cortessis V. A Gibbs sampling approach to linkage analysis. Hum Hered. 1992;42(1):63–76. doi: 10.1159/000154046. [DOI] [PubMed] [Google Scholar]
- Uimari P., Hoeschele I. Mapping-linked quantitative trait loci using Bayesian analysis and Markov chain Monte Carlo algorithms. Genetics. 1997 Jun;146(2):735–743. doi: 10.1093/genetics/146.2.735. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Uimari P., Thaller G., Hoeschele I. The use of multiple markers in a Bayesian method for mapping quantitative trait loci. Genetics. 1996 Aug;143(4):1831–1842. doi: 10.1093/genetics/143.4.1831. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Visscher P. M., Thompson R., Haley C. S. Confidence intervals in QTL mapping by bootstrapping. Genetics. 1996 Jun;143(2):1013–1020. doi: 10.1093/genetics/143.2.1013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xu S., Atchley W. R. Mapping quantitative trait loci for complex binary diseases using line crosses. Genetics. 1996 Jul;143(3):1417–1424. doi: 10.1093/genetics/143.3.1417. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zeng Z. B. Precision mapping of quantitative trait loci. Genetics. 1994 Apr;136(4):1457–1468. doi: 10.1093/genetics/136.4.1457. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zeng Z. B. Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):10972–10976. doi: 10.1073/pnas.90.23.10972. [DOI] [PMC free article] [PubMed] [Google Scholar]