Abstract
Saccharomyces cerevisiae has seven genes encoding proteins with a high degree (>85%) of amino-acid sequence identity to the aryl-alcohol dehydrogenase of the lignin-degrading, filamentous fungus, Phanerochaete chrysosporium. All but one member of this gene set are telomere associated. Moreover, all contain a sequence similar to the DNA-binding site of the Yap1p transcriptional activator either upstream of or within their coding sequences. The expression of the AAD genes was found to be induced by chemicals, such as diamide and diethyl maleic acid ester (DEME), that cause an oxidative shock by inactivating the glutathione (GSH) reservoir of the cells. In contrast, the oxidizing agent hydrogen peroxide has no effect on the expression of these genes. We found that the response to anti-GSH agents was Yap1p dependent. The very high level of nucleotide sequence similarity between the AAD genes makes it difficult to determine if they are all involved in the oxidative-stress response. The use of single and multiple aad deletants demonstrated that only AAD4 (YDL243c) and AAD6 (YFL056/57c) respond to the oxidative stress. Of these two genes, only AAD4 is likely to be functional since the YFL056/57c open reading frame is interrupted by a stop codon. Thus, in terms of the function in response to oxidative stress, the sevenfold redundancy of the AAD gene set is more apparent than real.
Full Text
The Full Text of this article is available as a PDF (292.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
- Baganz F., Hayes A., Marren D., Gardner D. C., Oliver S. G. Suitability of replacement markers for functional analysis studies in Saccharomyces cerevisiae. Yeast. 1997 Dec;13(16):1563–1573. doi: 10.1002/(SICI)1097-0061(199712)13:16<1563::AID-YEA240>3.0.CO;2-6. [DOI] [PubMed] [Google Scholar]
- Blattner F. R., Plunkett G., 3rd, Bloch C. A., Perna N. T., Burland V., Riley M., Collado-Vides J., Glasner J. D., Rode C. K., Mayhew G. F. The complete genome sequence of Escherichia coli K-12. Science. 1997 Sep 5;277(5331):1453–1462. doi: 10.1126/science.277.5331.1453. [DOI] [PubMed] [Google Scholar]
- Bussey H., Kaback D. B., Zhong W., Vo D. T., Clark M. W., Fortin N., Hall J., Ouellette B. F., Keng T., Barton A. B. The nucleotide sequence of chromosome I from Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1995 Apr 25;92(9):3809–3813. doi: 10.1073/pnas.92.9.3809. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carlson M., Celenza J. L., Eng F. J. Evolution of the dispersed SUC gene family of Saccharomyces by rearrangements of chromosome telomeres. Mol Cell Biol. 1985 Nov;5(11):2894–2902. doi: 10.1128/mcb.5.11.2894. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cary J. W., Wright M., Bhatnagar D., Lee R., Chu F. S. Molecular characterization of an Aspergillus parasiticus dehydrogenase gene, norA, located on the aflatoxin biosynthesis gene cluster. Appl Environ Microbiol. 1996 Feb;62(2):360–366. doi: 10.1128/aem.62.2.360-366.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Charron M. J., Read E., Haut S. R., Michels C. A. Molecular evolution of the telomere-associated MAL loci of Saccharomyces. Genetics. 1989 Jun;122(2):307–316. doi: 10.1093/genetics/122.2.307. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DeRisi J. L., Iyer V. R., Brown P. O. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science. 1997 Oct 24;278(5338):680–686. doi: 10.1126/science.278.5338.680. [DOI] [PubMed] [Google Scholar]
- Delneri D., Gardner D. C., Bruschi C. V., Oliver S. G. Disruption of seven hypothetical aryl alcohol dehydrogenase genes from Saccharomyces cerevisiae and construction of a multiple knock-out strain. Yeast. 1999 Nov;15(15):1681–1689. doi: 10.1002/(SICI)1097-0061(199911)15:15<1681::AID-YEA486>3.0.CO;2-A. [DOI] [PubMed] [Google Scholar]
- Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dujon B., Alexandraki D., André B., Ansorge W., Baladron V., Ballesta J. P., Banrevi A., Bolle P. A., Bolotin-Fukuhara M., Bossier P. Complete DNA sequence of yeast chromosome XI. Nature. 1994 Jun 2;369(6479):371–378. doi: 10.1038/369371a0. [DOI] [PubMed] [Google Scholar]
- Duttweiler H. M., Gross D. S. Bacterial growth medium that significantly increases the yield of recombinant plasmid. Biotechniques. 1998 Mar;24(3):438–444. doi: 10.2144/98243st03. [DOI] [PubMed] [Google Scholar]
- Engler-Blum G., Meier M., Frank J., Müller G. A. Reduction of background problems in nonradioactive northern and Southern blot analyses enables higher sensitivity than 32P-based hybridizations. Anal Biochem. 1993 May 1;210(2):235–244. doi: 10.1006/abio.1993.1189. [DOI] [PubMed] [Google Scholar]
- Fernandes L., Rodrigues-Pousada C., Struhl K. Yap, a novel family of eight bZIP proteins in Saccharomyces cerevisiae with distinct biological functions. Mol Cell Biol. 1997 Dec;17(12):6982–6993. doi: 10.1128/mcb.17.12.6982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Galibert F., Alexandraki D., Baur A., Boles E., Chalwatzis N., Chuat J. C., Coster F., Cziepluch C., De Haan M., Domdey H. Complete nucleotide sequence of Saccharomyces cerevisiae chromosome X. EMBO J. 1996 May 1;15(9):2031–2049. [PMC free article] [PubMed] [Google Scholar]
- Goffeau A., Barrell B. G., Bussey H., Davis R. W., Dujon B., Feldmann H., Galibert F., Hoheisel J. D., Jacq C., Johnston M. Life with 6000 genes. Science. 1996 Oct 25;274(5287):546, 563-7. doi: 10.1126/science.274.5287.546. [DOI] [PubMed] [Google Scholar]
- James C. M., Indge K. J., Oliver S. G. DNA sequence analysis of a 35 kb segment from Saccharomyces cerevisiae chromosome VII reveals 19 open reading frames including RAD54, ACE1/CUP2, PMR1, RCK1, AMS1 and CAL1/CDC43. Yeast. 1995 Nov;11(14):1413–1419. doi: 10.1002/yea.320111409. [DOI] [PubMed] [Google Scholar]
- Keogh R. S., Seoighe C., Wolfe K. H. Evolution of gene order and chromosome number in Saccharomyces, Kluyveromyces and related fungi. Yeast. 1998 Mar 30;14(5):443–457. doi: 10.1002/(SICI)1097-0061(19980330)14:5<443::AID-YEA243>3.0.CO;2-L. [DOI] [PubMed] [Google Scholar]
- Kuge S., Jones N., Nomoto A. Regulation of yAP-1 nuclear localization in response to oxidative stress. EMBO J. 1997 Apr 1;16(7):1710–1720. doi: 10.1093/emboj/16.7.1710. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuge S., Jones N. YAP1 dependent activation of TRX2 is essential for the response of Saccharomyces cerevisiae to oxidative stress by hydroperoxides. EMBO J. 1994 Feb 1;13(3):655–664. doi: 10.1002/j.1460-2075.1994.tb06304.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li Z., Paulovich A. G., Woolford J. L., Jr Feedback inhibition of the yeast ribosomal protein gene CRY2 is mediated by the nucleotide sequence and secondary structure of CRY2 pre-mRNA. Mol Cell Biol. 1995 Nov;15(11):6454–6464. doi: 10.1128/mcb.15.11.6454. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Melnick L., Sherman F. The gene clusters ARC and COR on chromosomes 5 and 10, respectively, of Saccharomyces cerevisiae share a common ancestry. J Mol Biol. 1993 Oct 5;233(3):372–388. doi: 10.1006/jmbi.1993.1518. [DOI] [PubMed] [Google Scholar]
- Mewes H. W., Albermann K., Bähr M., Frishman D., Gleissner A., Hani J., Heumann K., Kleine K., Maierl A., Oliver S. G. Overview of the yeast genome. Nature. 1997 May 29;387(6632 Suppl):7–65. doi: 10.1038/42755. [DOI] [PubMed] [Google Scholar]
- Moye-Rowley W. S., Harshman K. D., Parker C. S. Yeast YAP1 encodes a novel form of the jun family of transcriptional activator proteins. Genes Dev. 1989 Mar;3(3):283–292. doi: 10.1101/gad.3.3.283. [DOI] [PubMed] [Google Scholar]
- Murakami Y., Naitou M., Hagiwara H., Shibata T., Ozawa M., Sasanuma S., Sasanuma M., Tsuchiya Y., Soeda E., Yokoyama K. Analysis of the nucleotide sequence of chromosome VI from Saccharomyces cerevisiae. Nat Genet. 1995 Jul;10(3):261–268. doi: 10.1038/ng0795-261. [DOI] [PubMed] [Google Scholar]
- Naumov G., Turakainen H., Naumova E., Aho S., Korhola M. A new family of polymorphic genes in Saccharomyces cerevisiae: alpha-galactosidase genes MEL1-MEL7. Mol Gen Genet. 1990 Oct;224(1):119–128. doi: 10.1007/BF00259458. [DOI] [PubMed] [Google Scholar]
- Oliver S. G. From DNA sequence to biological function. Nature. 1996 Feb 15;379(6566):597–600. doi: 10.1038/379597a0. [DOI] [PubMed] [Google Scholar]
- Oliver S. G. From DNA sequence to biological function: the new "Voyage of the Beagle'. Biochem Soc Trans. 1996 Feb;24(1):291–292. doi: 10.1042/bst0240291. [DOI] [PubMed] [Google Scholar]
- Oliver S. G., van der Aart Q. J., Agostoni-Carbone M. L., Aigle M., Alberghina L., Alexandraki D., Antoine G., Anwar R., Ballesta J. P., Benit P. The complete DNA sequence of yeast chromosome III. Nature. 1992 May 7;357(6373):38–46. doi: 10.1038/357038a0. [DOI] [PubMed] [Google Scholar]
- Page R. D. TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci. 1996 Aug;12(4):357–358. doi: 10.1093/bioinformatics/12.4.357. [DOI] [PubMed] [Google Scholar]
- Pearson W. R., Lipman D. J. Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2444–2448. doi: 10.1073/pnas.85.8.2444. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Petes T. D., Hereford L. M., Skryabin K. G. Characterization of two types of yeast ribosomal DNA genes. J Bacteriol. 1978 Apr;134(1):295–305. doi: 10.1128/jb.134.1.295-305.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reiser J., Muheim A., Hardegger M., Frank G., Fiechter A. Aryl-alcohol dehydrogenase from the white-rot fungus Phanerochaete chrysosporium. Gene cloning, sequence analysis, expression, and purification of the recombinant enzyme. J Biol Chem. 1994 Nov 11;269(45):28152–28159. [PubMed] [Google Scholar]
- Sikorski R. S., Hieter P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics. 1989 May;122(1):19–27. doi: 10.1093/genetics/122.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stephen D. W., Rivers S. L., Jamieson D. J. The role of the YAP1 and YAP2 genes in the regulation of the adaptive oxidative stress responses of Saccharomyces cerevisiae. Mol Microbiol. 1995 May;16(3):415–423. doi: 10.1111/j.1365-2958.1995.tb02407.x. [DOI] [PubMed] [Google Scholar]
- Van Dyck L., Pascual-Ahuir A., Purnelle B., Goffeau A. An 8.2 kb DNA segment from chromosome XIV carries the RPD3 and PAS8 genes as well as the Saccharomyces cerevisiae homologue of the thiamine-repressed nmt1 gene and a chromosome III-duplicated gene for a putative aryl-alcohol dehydrogenase. Yeast. 1995 Aug;11(10):987–991. doi: 10.1002/yea.320111010. [DOI] [PubMed] [Google Scholar]
- Warner J. R. Synthesis of ribosomes in Saccharomyces cerevisiae. Microbiol Rev. 1989 Jun;53(2):256–271. doi: 10.1128/mr.53.2.256-271.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wemmie J. A., Steggerda S. M., Moye-Rowley W. S. The Saccharomyces cerevisiae AP-1 protein discriminates between oxidative stress elicited by the oxidants H2O2 and diamide. J Biol Chem. 1997 Mar 21;272(12):7908–7914. doi: 10.1074/jbc.272.12.7908. [DOI] [PubMed] [Google Scholar]
- Wicksteed B. L., Collins I., Dershowitz A., Stateva L. I., Green R. P., Oliver S. G., Brown A. J., Newlon C. S. A physical comparison of chromosome III in six strains of Saccharomyces cerevisiae. Yeast. 1994 Jan;10(1):39–57. doi: 10.1002/yea.320100105. [DOI] [PubMed] [Google Scholar]