Skip to main content
Genetics logoLink to Genetics
. 2002 Jul;161(3):1053–1063. doi: 10.1093/genetics/161.3.1053

Role of the Tsc1-Tsc2 complex in signaling and transport across the cell membrane in the fission yeast Schizosaccharomyces pombe.

Sanae Matsumoto 1, Amitabha Bandyopadhyay 1, David J Kwiatkowski 1, Umadas Maitra 1, Tomohiro Matsumoto 1
PMCID: PMC1462175  PMID: 12136010

Abstract

Heterozygous inactivation of either human TSC1 or TSC2 causes tuberous sclerosis (TSC), in which development of benign tumors, hamartomas, occurs via a two-hit mechanism. In this study, fission yeast genes homologous to TSC1 and TSC2 were identified, and their protein products were shown to physically interact like the human gene products. Strains lacking tsc1(+) or tsc2(+) were defective in uptake of nutrients from the environment. An amino acid permease, which is normally positioned on the plasma membrane, aggregated in the cytoplasm or was confined in vacuole-like structures in Deltatsc1 and Deltatsc2 strains. Deletion of tsc1(+) or tsc2(+) also caused a defect in conjugation. When a limited number of the cells were mixed, they conjugated poorly. The conjugation efficiency was improved by increased cell density. Deltatsc1 cells were not responsive to a mating pheromone, P-factor, suggesting that Tsc1 has an important role in the signal cascade for conjugation. These results indicate that the fission yeast Tsc1-Tsc2 complex plays a role in the regulation of protein trafficking and suggest a similar function for the human proteins. We also show that fission yeast Int6 is involved in a similar process, but functions in an independent genetic pathway.

Full Text

The Full Text of this article is available as a PDF (393.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asano K., Merrick W. C., Hershey J. W. The translation initiation factor eIF3-p48 subunit is encoded by int-6, a site of frequent integration by the mouse mammary tumor virus genome. J Biol Chem. 1997 Sep 19;272(38):23477–23480. doi: 10.1074/jbc.272.38.23477. [DOI] [PubMed] [Google Scholar]
  2. Bandyopadhyay A., Matsumoto T., Maitra U. Fission yeast Int6 is not essential for global translation initiation, but deletion of int6(+) causes hypersensitivity to caffeine and affects spore formation. Mol Biol Cell. 2000 Nov;11(11):4005–4018. doi: 10.1091/mbc.11.11.4005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bandyopadhyay Amitabha, Lakshmanan Viswanathan, Matsumoto Tomohiro, Chang Eric C., Maitra Umadas. Moe1 and spInt6, the fission yeast homologues of mammalian translation initiation factor 3 subunits p66 (eIF3d) and p48 (eIF3e), respectively, are required for stable association of eIF3 subunits. J Biol Chem. 2001 Nov 8;277(3):2360–2367. doi: 10.1074/jbc.M107790200. [DOI] [PubMed] [Google Scholar]
  4. Beach D., Rodgers L., Gould J. ran1+ controls the transition from mitotic division to meiosis in fission yeast. Curr Genet. 1985;10(4):297–311. doi: 10.1007/BF00365626. [DOI] [PubMed] [Google Scholar]
  5. Berger B., Wilson D. B., Wolf E., Tonchev T., Milla M., Kim P. S. Predicting coiled coils by use of pairwise residue correlations. Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8259–8263. doi: 10.1073/pnas.92.18.8259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Carbonara C., Longa L., Grosso E., Borrone C., Garrè M. G., Brisigotti M., Migone N. 9q34 loss of heterozygosity in a tuberous sclerosis astrocytoma suggests a growth suppressor-like activity also for the TSC1 gene. Hum Mol Genet. 1994 Oct;3(10):1829–1832. doi: 10.1093/hmg/3.10.1829. [DOI] [PubMed] [Google Scholar]
  7. Cottarel G., Beach D., Deuschle U. Two new multi-purpose multicopy Schizosaccharomyces pombe shuttle vectors, pSP1 and pSP2. Curr Genet. 1993 May-Jun;23(5-6):547–548. doi: 10.1007/BF00312650. [DOI] [PubMed] [Google Scholar]
  8. Davey J. Fusion of a fission yeast. Yeast. 1998 Dec;14(16):1529–1566. doi: 10.1002/(SICI)1097-0061(199812)14:16<1529::AID-YEA357>3.0.CO;2-0. [DOI] [PubMed] [Google Scholar]
  9. European Chromosome 16 Tuberous Sclerosis Consortium Identification and characterization of the tuberous sclerosis gene on chromosome 16. Cell. 1993 Dec 31;75(7):1305–1315. doi: 10.1016/0092-8674(93)90618-z. [DOI] [PubMed] [Google Scholar]
  10. Floyd S., De Camilli P. Endocytosis proteins and cancer: a potential link? Trends Cell Biol. 1998 Aug;8(8):299–301. doi: 10.1016/s0962-8924(98)01316-6. [DOI] [PubMed] [Google Scholar]
  11. Gao X., Pan D. TSC1 and TSC2 tumor suppressors antagonize insulin signaling in cell growth. Genes Dev. 2001 Jun 1;15(11):1383–1392. doi: 10.1101/gad.901101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Green A. J., Johnson P. H., Yates J. R. The tuberous sclerosis gene on chromosome 9q34 acts as a growth suppressor. Hum Mol Genet. 1994 Oct;3(10):1833–1834. doi: 10.1093/hmg/3.10.1833. [DOI] [PubMed] [Google Scholar]
  13. Green A. J., Smith M., Yates J. R. Loss of heterozygosity on chromosome 16p13.3 in hamartomas from tuberous sclerosis patients. Nat Genet. 1994 Feb;6(2):193–196. doi: 10.1038/ng0294-193. [DOI] [PubMed] [Google Scholar]
  14. Henske E. P., Scheithauer B. W., Short M. P., Wollmann R., Nahmias J., Hornigold N., van Slegtenhorst M., Welsh C. T., Kwiatkowski D. J. Allelic loss is frequent in tuberous sclerosis kidney lesions but rare in brain lesions. Am J Hum Genet. 1996 Aug;59(2):400–406. [PMC free article] [PubMed] [Google Scholar]
  15. Hirota K., Tanaka K., Watanabe Y., Yamamoto M. Functional analysis of the C-terminal cytoplasmic region of the M-factor receptor in fission yeast. Genes Cells. 2001 Mar;6(3):201–214. doi: 10.1046/j.1365-2443.2001.00415.x. [DOI] [PubMed] [Google Scholar]
  16. Imai Y., Yamamoto M. The fission yeast mating pheromone P-factor: its molecular structure, gene structure, and ability to induce gene expression and G1 arrest in the mating partner. Genes Dev. 1994 Feb 1;8(3):328–338. doi: 10.1101/gad.8.3.328. [DOI] [PubMed] [Google Scholar]
  17. Ito N., Rubin G. M. gigas, a Drosophila homolog of tuberous sclerosis gene product-2, regulates the cell cycle. Cell. 1999 Feb 19;96(4):529–539. doi: 10.1016/s0092-8674(00)80657-1. [DOI] [PubMed] [Google Scholar]
  18. Jauniaux J. C., Grenson M. GAP1, the general amino acid permease gene of Saccharomyces cerevisiae. Nucleotide sequence, protein similarity with the other bakers yeast amino acid permeases, and nitrogen catabolite repression. Eur J Biochem. 1990 May 31;190(1):39–44. doi: 10.1111/j.1432-1033.1990.tb15542.x. [DOI] [PubMed] [Google Scholar]
  19. Karagiannis J., Saleki R., Young P. G. The pub1 E3 ubiquitin ligase negatively regulates leucine uptake in response to NH(4)(+) in fission yeast. Curr Genet. 1999 Jul;35(6):593–601. doi: 10.1007/s002940050457. [DOI] [PubMed] [Google Scholar]
  20. Kleymenova E., Ibraghimov-Beskrovnaya O., Kugoh H., Everitt J., Xu H., Kiguchi K., Landes G., Harris P., Walker C. Tuberin-dependent membrane localization of polycystin-1: a functional link between polycystic kidney disease and the TSC2 tumor suppressor gene. Mol Cell. 2001 Apr;7(4):823–832. doi: 10.1016/s1097-2765(01)00226-x. [DOI] [PubMed] [Google Scholar]
  21. Kwiatkowski D. J., Short M. P. Tuberous sclerosis. Arch Dermatol. 1994 Mar;130(3):348–354. [PubMed] [Google Scholar]
  22. Kwiatkowski David J., Zhang Hongbing, Bandura Jennifer L., Heiberger Kristina M., Glogauer Michael, el-Hashemite Nisreen, Onda Hiroaki. A mouse model of TSC1 reveals sex-dependent lethality from liver hemangiomas, and up-regulation of p70S6 kinase activity in Tsc1 null cells. Hum Mol Genet. 2002 Mar 1;11(5):525–534. doi: 10.1093/hmg/11.5.525. [DOI] [PubMed] [Google Scholar]
  23. Lamb R. F., Roy C., Diefenbach T. J., Vinters H. V., Johnson M. W., Jay D. G., Hall A. The TSC1 tumour suppressor hamartin regulates cell adhesion through ERM proteins and the GTPase Rho. Nat Cell Biol. 2000 May;2(5):281–287. doi: 10.1038/35010550. [DOI] [PubMed] [Google Scholar]
  24. Marchetti A., Buttitta F., Miyazaki S., Gallahan D., Smith G. H., Callahan R. Int-6, a highly conserved, widely expressed gene, is mutated by mouse mammary tumor virus in mammary preneoplasia. J Virol. 1995 Mar;69(3):1932–1938. doi: 10.1128/jvi.69.3.1932-1938.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mizukami T., Chang W. I., Garkavtsev I., Kaplan N., Lombardi D., Matsumoto T., Niwa O., Kounosu A., Yanagida M., Marr T. G. A 13 kb resolution cosmid map of the 14 Mb fission yeast genome by nonrandom sequence-tagged site mapping. Cell. 1993 Apr 9;73(1):121–132. doi: 10.1016/0092-8674(93)90165-m. [DOI] [PubMed] [Google Scholar]
  26. Petersen J., Nielsen O., Egel R., Hagan I. M. FH3, a domain found in formins, targets the fission yeast formin Fus1 to the projection tip during conjugation. J Cell Biol. 1998 Jun 1;141(5):1217–1228. doi: 10.1083/jcb.141.5.1217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Petersen J., Weilguny D., Egel R., Nielsen O. Characterization of fus1 of Schizosaccharomyces pombe: a developmentally controlled function needed for conjugation. Mol Cell Biol. 1995 Jul;15(7):3697–3707. doi: 10.1128/mcb.15.7.3697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Plank T. L., Yeung R. S., Henske E. P. Hamartin, the product of the tuberous sclerosis 1 (TSC1) gene, interacts with tuberin and appears to be localized to cytoplasmic vesicles. Cancer Res. 1998 Nov 1;58(21):4766–4770. [PubMed] [Google Scholar]
  29. Potter C. J., Huang H., Xu T. Drosophila Tsc1 functions with Tsc2 to antagonize insulin signaling in regulating cell growth, cell proliferation, and organ size. Cell. 2001 May 4;105(3):357–368. doi: 10.1016/s0092-8674(01)00333-6. [DOI] [PubMed] [Google Scholar]
  30. Schmidt A., Hall M. N., Koller A. Two FK506 resistance-conferring genes in Saccharomyces cerevisiae, TAT1 and TAT2, encode amino acid permeases mediating tyrosine and tryptophan uptake. Mol Cell Biol. 1994 Oct;14(10):6597–6606. doi: 10.1128/mcb.14.10.6597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sophianopoulou V., Diallinas G. Amino acid transporters of lower eukaryotes: regulation, structure and topogenesis. FEMS Microbiol Rev. 1995 Jan;16(1):53–75. doi: 10.1111/j.1574-6976.1995.tb00155.x. [DOI] [PubMed] [Google Scholar]
  32. Tanaka J., Fink G. R. The histidine permease gene (HIP1) of Saccharomyces cerevisiae. Gene. 1985;38(1-3):205–214. doi: 10.1016/0378-1119(85)90219-7. [DOI] [PubMed] [Google Scholar]
  33. Tapon N., Ito N., Dickson B. J., Treisman J. E., Hariharan I. K. The Drosophila tuberous sclerosis complex gene homologs restrict cell growth and cell proliferation. Cell. 2001 May 4;105(3):345–355. doi: 10.1016/s0092-8674(01)00332-4. [DOI] [PubMed] [Google Scholar]
  34. Wienecke R., König A., DeClue J. E. Identification of tuberin, the tuberous sclerosis-2 product. Tuberin possesses specific Rap1GAP activity. J Biol Chem. 1995 Jul 7;270(27):16409–16414. doi: 10.1074/jbc.270.27.16409. [DOI] [PubMed] [Google Scholar]
  35. Xiao G. H., Shoarinejad F., Jin F., Golemis E. A., Yeung R. S. The tuberous sclerosis 2 gene product, tuberin, functions as a Rab5 GTPase activating protein (GAP) in modulating endocytosis. J Biol Chem. 1997 Mar 7;272(10):6097–6100. doi: 10.1074/jbc.272.10.6097. [DOI] [PubMed] [Google Scholar]
  36. van Slegtenhorst M., Nellist M., Nagelkerken B., Cheadle J., Snell R., van den Ouweland A., Reuser A., Sampson J., Halley D., van der Sluijs P. Interaction between hamartin and tuberin, the TSC1 and TSC2 gene products. Hum Mol Genet. 1998 Jun;7(6):1053–1057. doi: 10.1093/hmg/7.6.1053. [DOI] [PubMed] [Google Scholar]
  37. van Slegtenhorst M., de Hoogt R., Hermans C., Nellist M., Janssen B., Verhoef S., Lindhout D., van den Ouweland A., Halley D., Young J. Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science. 1997 Aug 8;277(5327):805–808. doi: 10.1126/science.277.5327.805. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES