Skip to main content
Genetics logoLink to Genetics
. 2002 Dec;162(4):1687–1702. doi: 10.1093/genetics/162.4.1687

A Drosophila homolog of the polyglutamine disease gene SCA2 is a dosage-sensitive regulator of actin filament formation.

Terrence F Satterfield 1, Stephen M Jackson 1, Leo J Pallanck 1
PMCID: PMC1462369  PMID: 12524342

Abstract

Spinocerebellar ataxia type 2 (SCA2) is a neurodegenerative disorder caused by the expansion of a CAG repeat encoding a polyglutamine tract in ataxin-2, the SCA2 gene product. The normal cellular function of ataxin-2 and the mechanism by which polyglutamine expansion of ataxin-2 causes neurodegeneration remain unknown. In this study we have used genetic and molecular approaches to investigate the function of a Drosophila homolog of the SCA2 gene (Datx2). Like human ataxin-2, Datx2 is found throughout development in a variety of tissue types and localizes to the cytoplasm. Mutations that reduce Datx2 activity or transgenic overexpression of Datx2 result in female sterility, aberrant sensory bristle morphology, loss or degeneration of tissues, and lethality. These phenotypes appear to result from actin filament formation defects occurring downstream of actin synthesis. Further studies demonstrate that Datx2 does not assemble with actin filaments, suggesting that the role of Datx2 in actin filament formation is indirect. These results indicate that Datx2 is a dosage-sensitive regulator of actin filament formation. Given that loss of cytoskeleton-dependent dendritic structure defines an early event in SCA2 pathogenesis, our findings suggest the possibility that dysregulation of actin cytoskeletal structure resulting from altered ataxin-2 activity is responsible for neurodegeneration in SCA2.

Full Text

The Full Text of this article is available as a PDF (777.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams M. D., Celniker S. E., Holt R. A., Evans C. A., Gocayne J. D., Amanatides P. G., Scherer S. E., Li P. W., Hoskins R. A., Galle R. F. The genome sequence of Drosophila melanogaster. Science. 2000 Mar 24;287(5461):2185–2195. doi: 10.1126/science.287.5461.2185. [DOI] [PubMed] [Google Scholar]
  2. Barth A. I., Näthke I. S., Nelson W. J. Cadherins, catenins and APC protein: interplay between cytoskeletal complexes and signaling pathways. Curr Opin Cell Biol. 1997 Oct;9(5):683–690. doi: 10.1016/s0955-0674(97)80122-6. [DOI] [PubMed] [Google Scholar]
  3. Brand A. H., Perrimon N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development. 1993 Jun;118(2):401–415. doi: 10.1242/dev.118.2.401. [DOI] [PubMed] [Google Scholar]
  4. Brenner M., Johnson A. B., Boespflug-Tanguy O., Rodriguez D., Goldman J. E., Messing A. Mutations in GFAP, encoding glial fibrillary acidic protein, are associated with Alexander disease. Nat Genet. 2001 Jan;27(1):117–120. doi: 10.1038/83679. [DOI] [PubMed] [Google Scholar]
  5. Callaerts P., Leng S., Clements J., Benassayag C., Cribbs D., Kang Y. Y., Walldorf U., Fischbach K. F., Strauss R. Drosophila Pax-6/eyeless is essential for normal adult brain structure and function. J Neurobiol. 2001 Feb 5;46(2):73–88. doi: 10.1002/1097-4695(20010205)46:2<73::aid-neu10>3.0.co;2-n. [DOI] [PubMed] [Google Scholar]
  6. Cant K., Knowles B. A., Mooseker M. S., Cooley L. Drosophila singed, a fascin homolog, is required for actin bundle formation during oogenesis and bristle extension. J Cell Biol. 1994 Apr;125(2):369–380. doi: 10.1083/jcb.125.2.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chen J., Godt D., Gunsalus K., Kiss I., Goldberg M., Laski F. A. Cofilin/ADF is required for cell motility during Drosophila ovary development and oogenesis. Nat Cell Biol. 2001 Feb;3(2):204–209. doi: 10.1038/35055120. [DOI] [PubMed] [Google Scholar]
  8. Chou T. B., Perrimon N. The autosomal FLP-DFS technique for generating germline mosaics in Drosophila melanogaster. Genetics. 1996 Dec;144(4):1673–1679. doi: 10.1093/genetics/144.4.1673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cummings C. J., Zoghbi H. Y. Trinucleotide repeats: mechanisms and pathophysiology. Annu Rev Genomics Hum Genet. 2000;1:281–328. doi: 10.1146/annurev.genom.1.1.281. [DOI] [PubMed] [Google Scholar]
  10. Dragatsis I., Levine M. S., Zeitlin S. Inactivation of Hdh in the brain and testis results in progressive neurodegeneration and sterility in mice. Nat Genet. 2000 Nov;26(3):300–306. doi: 10.1038/81593. [DOI] [PubMed] [Google Scholar]
  11. Ellis M. C., O'Neill E. M., Rubin G. M. Expression of Drosophila glass protein and evidence for negative regulation of its activity in non-neuronal cells by another DNA-binding protein. Development. 1993 Nov;119(3):855–865. doi: 10.1242/dev.119.3.855. [DOI] [PubMed] [Google Scholar]
  12. Garcia M. L., Cleveland D. W. Going new places using an old MAP: tau, microtubules and human neurodegenerative disease. Curr Opin Cell Biol. 2001 Feb;13(1):41–48. doi: 10.1016/s0955-0674(00)00172-1. [DOI] [PubMed] [Google Scholar]
  13. Godt D., Tepass U. Drosophila oocyte localization is mediated by differential cadherin-based adhesion. Nature. 1998 Sep 24;395(6700):387–391. doi: 10.1038/26493. [DOI] [PubMed] [Google Scholar]
  14. Grieshaber S. S., Lankenau D. H., Talbot T., Holland S., Petersen N. S. Expression of the 53 kD forked protein rescues F-actin bundle formation and mutant bristle phenotypes in Drosophila. Cell Motil Cytoskeleton. 2001 Dec;50(4):198–206. doi: 10.1002/cm.10007. [DOI] [PubMed] [Google Scholar]
  15. He W., Parker R. Functions of Lsm proteins in mRNA degradation and splicing. Curr Opin Cell Biol. 2000 Jun;12(3):346–350. doi: 10.1016/s0955-0674(00)00098-3. [DOI] [PubMed] [Google Scholar]
  16. Hopmann R., Cooper J. A., Miller K. G. Actin organization, bristle morphology, and viability are affected by actin capping protein mutations in Drosophila. J Cell Biol. 1996 Jun;133(6):1293–1305. doi: 10.1083/jcb.133.6.1293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Huynh D. P., Del Bigio M. R., Ho D. H., Pulst S. M. Expression of ataxin-2 in brains from normal individuals and patients with Alzheimer's disease and spinocerebellar ataxia 2. Ann Neurol. 1999 Feb;45(2):232–241. doi: 10.1002/1531-8249(199902)45:2<232::aid-ana14>3.0.co;2-7. [DOI] [PubMed] [Google Scholar]
  18. Huynh D. P., Figueroa K., Hoang N., Pulst S. M. Nuclear localization or inclusion body formation of ataxin-2 are not necessary for SCA2 pathogenesis in mouse or human. Nat Genet. 2000 Sep;26(1):44–50. doi: 10.1038/79162. [DOI] [PubMed] [Google Scholar]
  19. Imbert G., Saudou F., Yvert G., Devys D., Trottier Y., Garnier J. M., Weber C., Mandel J. L., Cancel G., Abbas N. Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats. Nat Genet. 1996 Nov;14(3):285–291. doi: 10.1038/ng1196-285. [DOI] [PubMed] [Google Scholar]
  20. Jackson S. M., Berg C. A. Soma-to-germline interactions during Drosophila oogenesis are influenced by dose-sensitive interactions between cut and the genes cappuccino, ovarian tumor and agnostic. Genetics. 1999 Sep;153(1):289–303. doi: 10.1093/genetics/153.1.289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Julien J. P., Beaulieu J. M. Cytoskeletal abnormalities in amyotrophic lateral sclerosis: beneficial or detrimental effects? J Neurol Sci. 2000 Nov 1;180(1-2):7–14. doi: 10.1016/s0022-510x(00)00422-6. [DOI] [PubMed] [Google Scholar]
  22. Korey C. A., Wilkie G., Davis I., Van Vactor D. small bristles is required for the morphogenesis of multiple tissues during Drosophila development. Genetics. 2001 Dec;159(4):1659–1670. doi: 10.1093/genetics/159.4.1659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kozlov G., Trempe J. F., Khaleghpour K., Kahvejian A., Ekiel I., Gehring K. Structure and function of the C-terminal PABC domain of human poly(A)-binding protein. Proc Natl Acad Sci U S A. 2001 Apr 3;98(8):4409–4413. doi: 10.1073/pnas.071024998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. La Spada A. R., Fu Y. H., Sopher B. L., Libby R. T., Wang X., Li L. Y., Einum D. D., Huang J., Possin D. E., Smith A. C. Polyglutamine-expanded ataxin-7 antagonizes CRX function and induces cone-rod dystrophy in a mouse model of SCA7. Neuron. 2001 Sep 27;31(6):913–927. doi: 10.1016/s0896-6273(01)00422-6. [DOI] [PubMed] [Google Scholar]
  25. Li Z., Van Aelst L., Cline H. T. Rho GTPases regulate distinct aspects of dendritic arbor growth in Xenopus central neurons in vivo. Nat Neurosci. 2000 Mar;3(3):217–225. doi: 10.1038/72920. [DOI] [PubMed] [Google Scholar]
  26. Mahajan-Miklos S., Cooley L. The villin-like protein encoded by the Drosophila quail gene is required for actin bundle assembly during oogenesis. Cell. 1994 Jul 29;78(2):291–301. doi: 10.1016/0092-8674(94)90298-4. [DOI] [PubMed] [Google Scholar]
  27. Mangus D. A., Amrani N., Jacobson A. Pbp1p, a factor interacting with Saccharomyces cerevisiae poly(A)-binding protein, regulates polyadenylation. Mol Cell Biol. 1998 Dec;18(12):7383–7396. doi: 10.1128/mcb.18.12.7383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. McMurray C. T. Neurodegeneration: diseases of the cytoskeleton? Cell Death Differ. 2000 Oct;7(10):861–865. doi: 10.1038/sj.cdd.4400764. [DOI] [PubMed] [Google Scholar]
  29. Minamide L. S., Striegl A. M., Boyle J. A., Meberg P. J., Bamburg J. R. Neurodegenerative stimuli induce persistent ADF/cofilin-actin rods that disrupt distal neurite function. Nat Cell Biol. 2000 Sep;2(9):628–636. doi: 10.1038/35023579. [DOI] [PubMed] [Google Scholar]
  30. Nakayama A. Y., Harms M. B., Luo L. Small GTPases Rac and Rho in the maintenance of dendritic spines and branches in hippocampal pyramidal neurons. J Neurosci. 2000 Jul 15;20(14):5329–5338. doi: 10.1523/JNEUROSCI.20-14-05329.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Peifer M., Orsulic S., Sweeton D., Wieschaus E. A role for the Drosophila segment polarity gene armadillo in cell adhesion and cytoskeletal integrity during oogenesis. Development. 1993 Aug;118(4):1191–1207. doi: 10.1242/dev.118.4.1191. [DOI] [PubMed] [Google Scholar]
  32. Pulst S. M., Nechiporuk A., Nechiporuk T., Gispert S., Chen X. N., Lopes-Cendes I., Pearlman S., Starkman S., Orozco-Diaz G., Lunkes A. Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nat Genet. 1996 Nov;14(3):269–276. doi: 10.1038/ng1196-269. [DOI] [PubMed] [Google Scholar]
  33. Restituito S., Thompson R. M., Eliet J., Raike R. S., Riedl M., Charnet P., Gomez C. M. The polyglutamine expansion in spinocerebellar ataxia type 6 causes a beta subunit-specific enhanced activation of P/Q-type calcium channels in Xenopus oocytes. J Neurosci. 2000 Sep 1;20(17):6394–6403. doi: 10.1523/JNEUROSCI.20-17-06394.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Robinson D. N., Cooley L. Genetic analysis of the actin cytoskeleton in the Drosophila ovary. Annu Rev Cell Dev Biol. 1997;13:147–170. doi: 10.1146/annurev.cellbio.13.1.147. [DOI] [PubMed] [Google Scholar]
  35. Rubin G. M., Hong L., Brokstein P., Evans-Holm M., Frise E., Stapleton M., Harvey D. A. A Drosophila complementary DNA resource. Science. 2000 Mar 24;287(5461):2222–2224. doi: 10.1126/science.287.5461.2222. [DOI] [PubMed] [Google Scholar]
  36. Rørth P., Szabo K., Bailey A., Laverty T., Rehm J., Rubin G. M., Weigmann K., Milán M., Benes V., Ansorge W. Systematic gain-of-function genetics in Drosophila. Development. 1998 Mar;125(6):1049–1057. doi: 10.1242/dev.125.6.1049. [DOI] [PubMed] [Google Scholar]
  37. Saebøe-Larssen S., Lyamouri M., Merriam J., Oksvold M. P., Lambertsson A. Ribosomal protein insufficiency and the minute syndrome in Drosophila: a dose-response relationship. Genetics. 1998 Mar;148(3):1215–1224. doi: 10.1093/genetics/148.3.1215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Sanpei K., Takano H., Igarashi S., Sato T., Oyake M., Sasaki H., Wakisaka A., Tashiro K., Ishida Y., Ikeuchi T. Identification of the spinocerebellar ataxia type 2 gene using a direct identification of repeat expansion and cloning technique, DIRECT. Nat Genet. 1996 Nov;14(3):277–284. doi: 10.1038/ng1196-277. [DOI] [PubMed] [Google Scholar]
  39. Shibata H., Huynh D. P., Pulst S. M. A novel protein with RNA-binding motifs interacts with ataxin-2. Hum Mol Genet. 2000 May 22;9(9):1303–1313. doi: 10.1093/hmg/9.9.1303. [DOI] [PubMed] [Google Scholar]
  40. Shimohata T., Onodera O., Tsuji S. Expanded polyglutamine stretches lead to aberrant transcriptional regulation in polyglutamine diseases. Hum Cell. 2001 Mar;14(1):17–25. [PubMed] [Google Scholar]
  41. Spradling A. C., Stern D. M., Kiss I., Roote J., Laverty T., Rubin G. M. Gene disruptions using P transposable elements: an integral component of the Drosophila genome project. Proc Natl Acad Sci U S A. 1995 Nov 21;92(24):10824–10830. doi: 10.1073/pnas.92.24.10824. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Spradling A. C., Stern D., Beaton A., Rhem E. J., Laverty T., Mozden N., Misra S., Rubin G. M. The Berkeley Drosophila Genome Project gene disruption project: Single P-element insertions mutating 25% of vital Drosophila genes. Genetics. 1999 Sep;153(1):135–177. doi: 10.1093/genetics/153.1.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Steffan J. S., Bodai L., Pallos J., Poelman M., McCampbell A., Apostol B. L., Kazantsev A., Schmidt E., Zhu Y. Z., Greenwald M. Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature. 2001 Oct 18;413(6857):739–743. doi: 10.1038/35099568. [DOI] [PubMed] [Google Scholar]
  44. Stowers R. S., Schwarz T. L. A genetic method for generating Drosophila eyes composed exclusively of mitotic clones of a single genotype. Genetics. 1999 Aug;152(4):1631–1639. doi: 10.1093/genetics/152.4.1631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Tharun S., He W., Mayes A. E., Lennertz P., Beggs J. D., Parker R. Yeast Sm-like proteins function in mRNA decapping and decay. Nature. 2000 Mar 30;404(6777):515–518. doi: 10.1038/35006676. [DOI] [PubMed] [Google Scholar]
  46. Tilney L. G., Connelly P., Smith S., Guild G. M. F-actin bundles in Drosophila bristles are assembled from modules composed of short filaments. J Cell Biol. 1996 Dec;135(5):1291–1308. doi: 10.1083/jcb.135.5.1291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Tolar L. A., Pallanck L. NSF function in neurotransmitter release involves rearrangement of the SNARE complex downstream of synaptic vesicle docking. J Neurosci. 1998 Dec 15;18(24):10250–10256. doi: 10.1523/JNEUROSCI.18-24-10250.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Tut T. G., Ghadessy F. J., Trifiro M. A., Pinsky L., Yong E. L. Long polyglutamine tracts in the androgen receptor are associated with reduced trans-activation, impaired sperm production, and male infertility. J Clin Endocrinol Metab. 1997 Nov;82(11):3777–3782. doi: 10.1210/jcem.82.11.4385. [DOI] [PubMed] [Google Scholar]
  49. Verheyen E. M., Cooley L. Profilin mutations disrupt multiple actin-dependent processes during Drosophila development. Development. 1994 Apr;120(4):717–728. doi: 10.1242/dev.120.4.717. [DOI] [PubMed] [Google Scholar]
  50. Yue S., Serra H. G., Zoghbi H. Y., Orr H. T. The spinocerebellar ataxia type 1 protein, ataxin-1, has RNA-binding activity that is inversely affected by the length of its polyglutamine tract. Hum Mol Genet. 2001 Jan 1;10(1):25–30. doi: 10.1093/hmg/10.1.25. [DOI] [PubMed] [Google Scholar]
  51. Zhang Sheng, Xu Lei, Lee Janet, Xu Tian. Drosophila atrophin homolog functions as a transcriptional corepressor in multiple developmental processes. Cell. 2002 Jan 11;108(1):45–56. doi: 10.1016/s0092-8674(01)00630-4. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES