Skip to main content
Genetics logoLink to Genetics
. 2004 Jan;166(1):291–306. doi: 10.1534/genetics.166.1.291

No evidence for an association between common nonsynonymous polymorphisms in delta and bristle number variation in natural and laboratory populations of Drosophila melanogaster.

Anne Genissel 1, Tomi Pastinen 1, Andrea Dowell 1, Trudy F C Mackay 1, Anthony D Long 1
PMCID: PMC1470686  PMID: 15020426

Abstract

We test the hypothesis that naturally occurring nonsynonymous variants in the Delta ligand of the Notch signaling pathway contribute to standing variation in sternopleural and/or abdominal bristle number in Drosophila melanogaster, for both a large cohort of wild-caught flies and previously described laboratory lines. We sequenced the transcribed region of Delta for 16 naturally occurring chromosomes and 65 SNPs, including 7 nonsynonymous SNPs (nsSNPs), were observed. Identified nsSNPs and 6 additional common SNPs, all located in exon 6 and the 3' UTR, were genotyped in 2060 wild-caught flies using an OLA-based methodology and genotyped in 38 additional natural chromosomes via DNA sequencing. None of the genotyped nsSNPs were significantly associated with natural variation in bristle number as assessed by a permutation test. A 95% upper bound on the additive genetic variance attributable to each genotyped SNP in the large natural cohort is <2% of the total phenotypic variation. Results suggest that two previously detected genotype/phenotype associations between bristle number and variants in the introns of Delta cannot be explained by linkage disequilibrium between these variants and nearby nonsynonymous variants. Unidentified regulatory variants more parsimoniously explain previous observations.

Full Text

The Full Text of this article is available as a PDF (513.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Artavanis-Tsakonas S., Matsuno K., Fortini M. E. Notch signaling. Science. 1995 Apr 14;268(5208):225–232. doi: 10.1126/science.7716513. [DOI] [PubMed] [Google Scholar]
  2. Artavanis-Tsakonas S., Rand M. D., Lake R. J. Notch signaling: cell fate control and signal integration in development. Science. 1999 Apr 30;284(5415):770–776. doi: 10.1126/science.284.5415.770. [DOI] [PubMed] [Google Scholar]
  3. Barton N. H., Turelli M. Evolutionary quantitative genetics: how little do we know? Annu Rev Genet. 1989;23:337–370. doi: 10.1146/annurev.ge.23.120189.002005. [DOI] [PubMed] [Google Scholar]
  4. Botstein David, Risch Neil. Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease. Nat Genet. 2003 Mar;33 (Suppl):228–237. doi: 10.1038/ng1090. [DOI] [PubMed] [Google Scholar]
  5. Cargill M., Altshuler D., Ireland J., Sklar P., Ardlie K., Patil N., Shaw N., Lane C. R., Lim E. P., Kalyanaraman N. Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nat Genet. 1999 Jul;22(3):231–238. doi: 10.1038/10290. [DOI] [PubMed] [Google Scholar]
  6. Carlson Christopher S., Eberle Michael A., Rieder Mark J., Smith Joshua D., Kruglyak Leonid, Nickerson Deborah A. Additional SNPs and linkage-disequilibrium analyses are necessary for whole-genome association studies in humans. Nat Genet. 2003 Mar 24;33(4):518–521. doi: 10.1038/ng1128. [DOI] [PubMed] [Google Scholar]
  7. Chakravarti A. Population genetics--making sense out of sequence. Nat Genet. 1999 Jan;21(1 Suppl):56–60. doi: 10.1038/4482. [DOI] [PubMed] [Google Scholar]
  8. Churchill G. A., Doerge R. W. Empirical threshold values for quantitative trait mapping. Genetics. 1994 Nov;138(3):963–971. doi: 10.1093/genetics/138.3.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Frary A., Nesbitt T. C., Grandillo S., Knaap E., Cong B., Liu J., Meller J., Elber R., Alpert K. B., Tanksley S. D. fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science. 2000 Jul 7;289(5476):85–88. doi: 10.1126/science.289.5476.85. [DOI] [PubMed] [Google Scholar]
  10. Fridman E., Pleban T., Zamir D. A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene. Proc Natl Acad Sci U S A. 2000 Apr 25;97(9):4718–4723. doi: 10.1073/pnas.97.9.4718. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Guo S. W., Thompson E. A. Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics. 1992 Jun;48(2):361–372. [PubMed] [Google Scholar]
  12. Jan Y. N., Jan L. Y. Genetic control of cell fate specification in Drosophila peripheral nervous system. Annu Rev Genet. 1994;28:373–393. doi: 10.1146/annurev.ge.28.120194.002105. [DOI] [PubMed] [Google Scholar]
  13. King M. C., Wilson A. C. Evolution at two levels in humans and chimpanzees. Science. 1975 Apr 11;188(4184):107–116. doi: 10.1126/science.1090005. [DOI] [PubMed] [Google Scholar]
  14. Klueg K. M., Parody T. R., Muskavitch M. A. Complex proteolytic processing acts on Delta, a transmembrane ligand for Notch, during Drosophila development. Mol Biol Cell. 1998 Jul;9(7):1709–1723. doi: 10.1091/mbc.9.7.1709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kopczynski C. C., Alton A. K., Fechtel K., Kooh P. J., Muskavitch M. A. Delta, a Drosophila neurogenic gene, is transcriptionally complex and encodes a protein related to blood coagulation factors and epidermal growth factor of vertebrates. Genes Dev. 1988 Dec;2(12B):1723–1735. doi: 10.1101/gad.2.12b.1723. [DOI] [PubMed] [Google Scholar]
  16. Kruglyak L. Prospects for whole-genome linkage disequilibrium mapping of common disease genes. Nat Genet. 1999 Jun;22(2):139–144. doi: 10.1038/9642. [DOI] [PubMed] [Google Scholar]
  17. Lai C., Lyman R. F., Long A. D., Langley C. H., Mackay T. F. Naturally occurring variation in bristle number and DNA polymorphisms at the scabrous locus of Drosophila melanogaster. Science. 1994 Dec 9;266(5191):1697–1702. doi: 10.1126/science.7992053. [DOI] [PubMed] [Google Scholar]
  18. Landegren U., Kaiser R., Sanders J., Hood L. A ligase-mediated gene detection technique. Science. 1988 Aug 26;241(4869):1077–1080. doi: 10.1126/science.3413476. [DOI] [PubMed] [Google Scholar]
  19. Lieber T., Wesley C. S., Alcamo E., Hassel B., Krane J. F., Campos-Ortega J. A., Young M. W. Single amino acid substitutions in EGF-like elements of Notch and Delta modify Drosophila development and affect cell adhesion in vitro. Neuron. 1992 Nov;9(5):847–859. doi: 10.1016/0896-6273(92)90238-9. [DOI] [PubMed] [Google Scholar]
  20. Long A. D., Langley C. H. The power of association studies to detect the contribution of candidate genetic loci to variation in complex traits. Genome Res. 1999 Aug;9(8):720–731. [PMC free article] [PubMed] [Google Scholar]
  21. Long A. D., Lyman R. F., Langley C. H., Mackay T. F. Two sites in the Delta gene region contribute to naturally occurring variation in bristle number in Drosophila melanogaster. Genetics. 1998 Jun;149(2):999–1017. doi: 10.1093/genetics/149.2.999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Long A. D., Lyman R. F., Morgan A. H., Langley C. H., Mackay T. F. Both naturally occurring insertions of transposable elements and intermediate frequency polymorphisms at the achaete-scute complex are associated with variation in bristle number in Drosophila melanogaster. Genetics. 2000 Mar;154(3):1255–1269. doi: 10.1093/genetics/154.3.1255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Long A. D., Mullaney S. L., Mackay T. F., Langley C. H. Genetic interactions between naturally occurring alleles at quantitative trait loci and mutant alleles at candidate loci affecting bristle number in Drosophila melanogaster. Genetics. 1996 Dec;144(4):1497–1510. doi: 10.1093/genetics/144.4.1497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Long W. J., Kirsch D. A government purchaser perspective: TennCare--strengthening the safety net. Cancer. 1998 May 15;82(10 Suppl):2000–2002. doi: 10.1002/(sici)1097-0142(19980515)82:10+<2000::aid-cncr4>3.3.co;2-#. [DOI] [PubMed] [Google Scholar]
  25. Luo J., Bergstrom D. E., Barany F. Improving the fidelity of Thermus thermophilus DNA ligase. Nucleic Acids Res. 1996 Aug 1;24(15):3071–3078. doi: 10.1093/nar/24.15.3071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lyman R. F., Mackay T. F. Candidate quantitative trait loci and naturally occurring phenotypic variation for bristle number in Drosophila melanogaster: the Delta-Hairless gene region. Genetics. 1998 Jun;149(2):983–998. doi: 10.1093/genetics/149.2.983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Mackay T. F., Langley C. H. Molecular and phenotypic variation in the achaete-scute region of Drosophila melanogaster. Nature. 1990 Nov 1;348(6296):64–66. doi: 10.1038/348064a0. [DOI] [PubMed] [Google Scholar]
  28. Mackay T. F. The genetic architecture of quantitative traits. Annu Rev Genet. 2001;35:303–339. doi: 10.1146/annurev.genet.35.102401.090633. [DOI] [PubMed] [Google Scholar]
  29. McDonald J. H., Kreitman M. Adaptive protein evolution at the Adh locus in Drosophila. Nature. 1991 Jun 20;351(6328):652–654. doi: 10.1038/351652a0. [DOI] [PubMed] [Google Scholar]
  30. Moriyama E. N., Powell J. R. Intraspecific nuclear DNA variation in Drosophila. Mol Biol Evol. 1996 Jan;13(1):261–277. doi: 10.1093/oxfordjournals.molbev.a025563. [DOI] [PubMed] [Google Scholar]
  31. Muskavitch M. A. Delta-notch signaling and Drosophila cell fate choice. Dev Biol. 1994 Dec;166(2):415–430. doi: 10.1006/dbio.1994.1326. [DOI] [PubMed] [Google Scholar]
  32. Parks A. L., Huppert S. S., Muskavitch M. A. The dynamics of neurogenic signalling underlying bristle development in Drosophila melanogaster. Mech Dev. 1997 Apr;63(1):61–74. doi: 10.1016/s0925-4773(97)00675-8. [DOI] [PubMed] [Google Scholar]
  33. Parks A. L., Klueg K. M., Stout J. R., Muskavitch M. A. Ligand endocytosis drives receptor dissociation and activation in the Notch pathway. Development. 2000 Apr;127(7):1373–1385. doi: 10.1242/dev.127.7.1373. [DOI] [PubMed] [Google Scholar]
  34. Parks A. L., Muskavitch M. A. Delta function is required for bristle organ determination and morphogenesis in Drosophila. Dev Biol. 1993 Jun;157(2):484–496. doi: 10.1006/dbio.1993.1151. [DOI] [PubMed] [Google Scholar]
  35. Ramain P., Khechumian K., Seugnet L., Arbogast N., Ackermann C., Heitzler P. Novel Notch alleles reveal a Deltex-dependent pathway repressing neural fate. Curr Biol. 2001 Nov 13;11(22):1729–1738. doi: 10.1016/s0960-9822(01)00562-0. [DOI] [PubMed] [Google Scholar]
  36. Robin Charles, Lyman Richard F., Long Anthony D., Langley Charles H., Mackay Trudy F. C. hairy: A quantitative trait locus for drosophila sensory bristle number. Genetics. 2002 Sep;162(1):155–164. doi: 10.1093/genetics/162.1.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Rozas J., Rozas R. DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics. 1999 Feb;15(2):174–175. doi: 10.1093/bioinformatics/15.2.174. [DOI] [PubMed] [Google Scholar]
  38. Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989 Nov;123(3):585–595. doi: 10.1093/genetics/123.3.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Tobe V. O., Taylor S. L., Nickerson D. A. Single-well genotyping of diallelic sequence variations by a two-color ELISA-based oligonucleotide ligation assay. Nucleic Acids Res. 1996 Oct 1;24(19):3728–3732. doi: 10.1093/nar/24.19.3728. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES