Abstract
I have assembled a neuron model simulating contiguous patches of nerve cell membrane. With this model I have examined the functional significance of different spatial and temporal distributions of synaptic inputs. The model consists of two terminal electronic analogue circuits with inputs controlled by a LINC computer. One terminal represents the inside of a membrane patch, the other represents the outside. Two circuit designs are used: one simulates spike-generating regions of the neuron, the other simulates subthreshold activity in inexcitable regions. To simulate a neuron, patches are assembled in various spatial arrangements by suitable connection to the “intracellular” nodes. Thus the relation of neuron geometry to aspects of spatiotemporal summation of synaptic inputs can be investigated readily. Performance of the model is assessed by comparison with results from microelectrode studies in the cochlear nucleus of the cat. In particular, the peristimulus time (PST) histogram and averaged membrane potential are used for quantitative comparison. The model suggests that the geometry of the neuron's receptive surface can account for a wide variety of physiologically observed behavior, particularly in response to dynamic stimuli.
Full text
PDF

















Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Erulkar S. D., Butler R. A., Gerstein G. L. Excitation and inhibition in cochlear nucleus. II. Frequency-modulated tones. J Neurophysiol. 1968 Jul;31(4):537–548. doi: 10.1152/jn.1968.31.4.537. [DOI] [PubMed] [Google Scholar]
- GERSTEIN G. L., KIANG N. Y. An approach to the quantitative analysis of electrophysiological data from single neurons. Biophys J. 1960 Sep;1:15–28. doi: 10.1016/s0006-3495(60)86872-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gerstein G. L., Butler R. A., Erulkar S. D. Excitation and inhibition in cochlear nucleus. I. Tone-burst stimulation. J Neurophysiol. 1968 Jul;31(4):526–536. doi: 10.1152/jn.1968.31.4.526. [DOI] [PubMed] [Google Scholar]
- Hind J. E., Anderson D. J., Brugge J. F., Rose J. E. Coding of information pertaining to paired low-frequency tones in single auditory nerve fibers of the squirrel monkey. J Neurophysiol. 1967 Jul;30(4):794–816. doi: 10.1152/jn.1967.30.4.794. [DOI] [PubMed] [Google Scholar]
- RALL W. Theory of physiological properties of dendrites. Ann N Y Acad Sci. 1962 Mar 2;96:1071–1092. doi: 10.1111/j.1749-6632.1962.tb54120.x. [DOI] [PubMed] [Google Scholar]
- RAMON-MOLINER E. An attempt at classifying nerve cells on the basis of their dendritic patterns. J Comp Neurol. 1962 Oct;119:211–227. doi: 10.1002/cne.901190207. [DOI] [PubMed] [Google Scholar]
- ROSE J. E., GALAMBOS R., HUGHES J. R. Microelectrode studies of the cochlear nuclei of the cat. Bull Johns Hopkins Hosp. 1959 May;104(5):211–251. [PubMed] [Google Scholar]
- Rall W., Burke R. E., Smith T. G., Nelson P. G., Frank K. Dendritic location of synapses and possible mechanisms for the monosynaptic EPSP in motoneurons. J Neurophysiol. 1967 Sep;30(5):1169–1193. doi: 10.1152/jn.1967.30.5.1169. [DOI] [PubMed] [Google Scholar]
- Rose J. E., Brugge J. F., Anderson D. J., Hind J. E. Phase-locked response to low-frequency tones in single auditory nerve fibers of the squirrel monkey. J Neurophysiol. 1967 Jul;30(4):769–793. doi: 10.1152/jn.1967.30.4.769. [DOI] [PubMed] [Google Scholar]
- Starr A., Britt R. Intracellular recordings from cat cochlear nucleus during tone stimulation. J Neurophysiol. 1970 Jan;33(1):137–147. doi: 10.1152/jn.1970.33.1.137. [DOI] [PubMed] [Google Scholar]