Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1994 Sep;113(1):43–48. doi: 10.1111/j.1476-5381.1994.tb16171.x

Inhibition by KF17837 of adenosine A2A receptor-mediated modulation of striatal GABA and ACh release.

M Kurokawa 1, I P Kirk 1, K A Kirkpatrick 1, H Kase 1, P J Richardson 1
PMCID: PMC1510043  PMID: 7812630

Abstract

1. The effect of the A2A adenosine receptor agonist, 2-p-(2-carboxyethyl)phenethyl-amino-5'-N-ethylcarboxamidoadenosine (CGS 21680) on the potassium evoked release of [3H]-gamma-aminobutyric acid ([3H]-GABA) from nerve terminals derived from the caudate-putamen and the globus pallidus of the rat was compared. In both preparations CGS 21680 (1 nM) inhibited the [3H]-GABA release evoked by 15 mM KCl but had no effect on that evoked by 30 mM KCl. 2. The ability of CGS 21680 (1 nM) to inhibit the release of [3H]-GABA from striatal nerve terminals was unaffected by the presence of the GABA receptor antagonists, bicuculline (10 microM), phaclofen (100 microM) and 2-hydroxysaclofen (100 microM). Similarly the opioid receptor antagonist, naloxone (10 microM), the adenosine A1 receptor antagonist, 8-cyclopentyl-1,3-dipropylxanthine (DPCPX, 40 nM), and the cholinoceptor antagonists, mecamylamine (10 microM) and atropine (100 nM) had no effect on this inhibition. 3. The ability of CGS 21680 (0.1 nM) to stimulate the release of [3H]-acetylcholine ([3H]-ACh) from striatal nerve terminals was unaffected by the presence of bicuculline (10 microM), 2-hydroxysaclofen (100 microM), phaclofen (100 microM), naloxone (10 microM) and DPCPX (4 nM). 4. The novel A2A receptor antagonist, (E)-8-(3,4-dimethoxystyryl)-1,3-dipropyl-7-methylxanthine (KF 17837), blocked the CGS 21680 (1 nM)-induced inhibition of [3H]-GABA efflux with an EC50 of approximately 30 nM and also antagonized the CGS 21680 (0.1 nM)-induced stimulation of [3H]-ACh release with an EC50 of approximately 0.3 nM.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
43

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barraco R. A., Martens K. A., Parizon M., Normile H. J. Adenosine A2a receptors in the nucleus accumbens mediate locomotor depression. Brain Res Bull. 1993;31(3-4):397–404. doi: 10.1016/0361-9230(93)90233-2. [DOI] [PubMed] [Google Scholar]
  2. Barraco R. A., Phillis J. W. Subtypes of adenosine receptors in the brainstem mediate opposite blood pressure responses. Neuropharmacology. 1991 Apr;30(4):403–407. doi: 10.1016/0028-3908(91)90067-l. [DOI] [PubMed] [Google Scholar]
  3. Brown S. J., Gill R., Evenden J. L., Iversen S. D., Richardson P. J. Striatal A2 receptor regulates apomorphine-induced turning in rats with unilateral dopamine denervation. Psychopharmacology (Berl) 1991;103(1):78–82. doi: 10.1007/BF02244078. [DOI] [PubMed] [Google Scholar]
  4. Brown S. J., James S., Reddington M., Richardson P. J. Both A1 and A2a purine receptors regulate striatal acetylcholine release. J Neurochem. 1990 Jul;55(1):31–38. doi: 10.1111/j.1471-4159.1990.tb08817.x. [DOI] [PubMed] [Google Scholar]
  5. Ferre S., von Euler G., Johansson B., Fredholm B. B., Fuxe K. Stimulation of high-affinity adenosine A2 receptors decreases the affinity of dopamine D2 receptors in rat striatal membranes. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7238–7241. doi: 10.1073/pnas.88.16.7238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ferré S., Fuxe K. Dopamine denervation leads to an increase in the intramembrane interaction between adenosine A2 and dopamine D2 receptors in the neostriatum. Brain Res. 1992 Oct 23;594(1):124–130. doi: 10.1016/0006-8993(92)91036-e. [DOI] [PubMed] [Google Scholar]
  7. Ferré S., Rubio A., Fuxe K. Stimulation of adenosine A2 receptors induces catalepsy. Neurosci Lett. 1991 Sep 16;130(2):162–164. doi: 10.1016/0304-3940(91)90387-9. [DOI] [PubMed] [Google Scholar]
  8. Ferré S., Snaprud P., Fuxe K. Opposing actions of an adenosine A2 receptor agonist and a GTP analogue on the regulation of dopamine D2 receptors in rat neostriatal membranes. Eur J Pharmacol. 1993 Feb 15;244(3):311–315. doi: 10.1016/0922-4106(93)90157-5. [DOI] [PubMed] [Google Scholar]
  9. Green R. D., Proudfit H. K., Yeung S. M. Modulation of striatal dopaminergic function by local injection of 5'-N-ethylcarboxamide adenosine. Science. 1982 Oct 1;218(4567):58–61. doi: 10.1126/science.7123218. [DOI] [PubMed] [Google Scholar]
  10. James S., Richardson P. J. The subcellular distribution of [3H]-CGS 21680 binding sites in the rat striatum: copurification with cholinergic nerve terminals. Neurochem Int. 1993 Aug;23(2):115–122. doi: 10.1016/0197-0186(93)90088-m. [DOI] [PubMed] [Google Scholar]
  11. James S., Xuereb J. H., Askalan R., Richardson P. J. Adenosine receptors in post-mortem human brain. Br J Pharmacol. 1992 Jan;105(1):238–244. doi: 10.1111/j.1476-5381.1992.tb14240.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jarvis M. F., Schulz R., Hutchison A. J., Do U. H., Sills M. A., Williams M. [3H]CGS 21680, a selective A2 adenosine receptor agonist directly labels A2 receptors in rat brain. J Pharmacol Exp Ther. 1989 Dec;251(3):888–893. [PubMed] [Google Scholar]
  13. Johansson B., Georgiev V., Parkinson F. E., Fredholm B. B. The binding of the adenosine A2 receptor selective agonist [3H]CGS 21680 to rat cortex differs from its binding to rat striatum. Eur J Pharmacol. 1993 Oct 15;247(2):103–110. doi: 10.1016/0922-4106(93)90066-i. [DOI] [PubMed] [Google Scholar]
  14. Kirk I. P., Richardson P. J. Adenosine A2a receptor-mediated modulation of striatal [3H]GABA and [3H]acetylcholine release. J Neurochem. 1994 Mar;62(3):960–966. doi: 10.1046/j.1471-4159.1994.62030960.x. [DOI] [PubMed] [Google Scholar]
  15. Kirkpatrick K. A., Richardson P. J. Adenosine receptor-mediated modulation of acetylcholine release from rat striatal synaptosomes. Br J Pharmacol. 1993 Nov;110(3):949–954. doi: 10.1111/j.1476-5381.1993.tb13905.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lupica C. R., Cass W. A., Zahniser N. R., Dunwiddie T. V. Effects of the selective adenosine A2 receptor agonist CGS 21680 on in vitro electrophysiology, cAMP formation and dopamine release in rat hippocampus and striatum. J Pharmacol Exp Ther. 1990 Mar;252(3):1134–1141. [PubMed] [Google Scholar]
  17. Maenhaut C., Van Sande J., Libert F., Abramowicz M., Parmentier M., Vanderhaegen J. J., Dumont J. E., Vassart G., Schiffmann S. RDC8 codes for an adenosine A2 receptor with physiological constitutive activity. Biochem Biophys Res Commun. 1990 Dec 31;173(3):1169–1178. doi: 10.1016/s0006-291x(05)80909-x. [DOI] [PubMed] [Google Scholar]
  18. Mayfield R. D., Suzuki F., Zahniser N. R. Adenosine A2a receptor modulation of electrically evoked endogenous GABA release from slices of rat globus pallidus. J Neurochem. 1993 Jun;60(6):2334–2337. doi: 10.1111/j.1471-4159.1993.tb03526.x. [DOI] [PubMed] [Google Scholar]
  19. McMahon H. T., Nicholls D. G. The bioenergetics of neurotransmitter release. Biochim Biophys Acta. 1991 Sep 13;1059(3):243–264. doi: 10.1016/s0005-2728(05)80210-5. [DOI] [PubMed] [Google Scholar]
  20. Mitchell I. J., Clarke C. E., Boyce S., Robertson R. G., Peggs D., Sambrook M. A., Crossman A. R. Neural mechanisms underlying parkinsonian symptoms based upon regional uptake of 2-deoxyglucose in monkeys exposed to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Neuroscience. 1989;32(1):213–226. doi: 10.1016/0306-4522(89)90120-6. [DOI] [PubMed] [Google Scholar]
  21. Pittel Z., Heldman E., Rubinstein R., Cohen S. Distinct muscarinic receptor subtypes differentially modulate acetylcholine release from corticocerebral synaptosomes. J Neurochem. 1990 Aug;55(2):665–672. doi: 10.1111/j.1471-4159.1990.tb04185.x. [DOI] [PubMed] [Google Scholar]
  22. Schiffmann S. N., Jacobs O., Vanderhaeghen J. J. Striatal restricted adenosine A2 receptor (RDC8) is expressed by enkephalin but not by substance P neurons: an in situ hybridization histochemistry study. J Neurochem. 1991 Sep;57(3):1062–1067. doi: 10.1111/j.1471-4159.1991.tb08257.x. [DOI] [PubMed] [Google Scholar]
  23. Schiffmann S. N., Vanderhaeghen J. J. Adenosine A2 receptors regulate the gene expression of striatopallidal and striatonigral neurons. J Neurosci. 1993 Mar;13(3):1080–1087. doi: 10.1523/JNEUROSCI.13-03-01080.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sebastião A. M., Ribeiro J. A. Evidence for the presence of excitatory A2 adenosine receptors in the rat hippocampus. Neurosci Lett. 1992 Apr 13;138(1):41–44. doi: 10.1016/0304-3940(92)90467-l. [DOI] [PubMed] [Google Scholar]
  25. Simpson R. E., O'Regan M. H., Perkins L. M., Phillis J. W. Excitatory transmitter amino acid release from the ischemic rat cerebral cortex: effects of adenosine receptor agonists and antagonists. J Neurochem. 1992 May;58(5):1683–1690. doi: 10.1111/j.1471-4159.1992.tb10041.x. [DOI] [PubMed] [Google Scholar]
  26. Vellucci S. V., Sirinathsinghji D. J., Richardson P. J. Adenosine A2 receptor regulation of apomorphine-induced turning in rats with unilateral striatal dopamine denervation. Psychopharmacology (Berl) 1993;111(3):383–388. doi: 10.1007/BF02244956. [DOI] [PubMed] [Google Scholar]
  27. Verhage M., Besselsen E., Lopes da Silva F. H., Ghijsen W. E. Ca2+-dependent regulation of presynaptic stimulus-secretion coupling. J Neurochem. 1989 Oct;53(4):1188–1194. doi: 10.1111/j.1471-4159.1989.tb07413.x. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES