Abstract
A physiologically based model of lead kinetics in children and adults has been developed and tested. The premises on which the physiologically based model is founded are reviewed in this paper. Because 95% or more of the body burden of lead in adults is found in the bone, bone metabolism is central to the model. Bone volumes are expressed as functions of body weight. Bone formation and resorption rates are estimated from human studies of stable labeled calcium kinetics. Cortical and trabecular bone are modeled separately, with their surface-to-volume ratios taken into account. Standardized growth curves are used to relate body weight to age. Other model features such as organ volumes and physiologic functions are related to body weight based on measurements made in human subjects over a range of ages. Calibrations of the model to two human data sets are shown, and two applications to specific research questions are illustrated. A brief comparison of the structure of this model with that of the Leggett model, and a comparison of the output of this model with that of the integrated exposure uptake biokinetic model of the U.S. Environmental Protection Agency, are also included.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abrams S. A., Esteban N. V., Vieira N. E., Sidbury J. B., Specker B. L., Yergey A. L. Developmental changes in calcium kinetics in children assessed using stable isotopes. J Bone Miner Res. 1992 Mar;7(3):287–293. doi: 10.1002/jbmr.5650070307. [DOI] [PubMed] [Google Scholar]
- Amstutz H. C., Sissons H. A. The structure of the vertebral spongiosa. J Bone Joint Surg Br. 1969 Aug;51(3):540–550. [PubMed] [Google Scholar]
- BAUER G. C., CARLSSON A., LINDQUIST B. Bone salt metabolism in humans studied by means of radiocalcium. Acta Med Scand. 1957 Aug 13;158(2):143–150. doi: 10.1111/j.0954-6820.1957.tb15756.x. [DOI] [PubMed] [Google Scholar]
- BRONNER F., RICHELLE L. J., SAVILLE P. D., NICHOLAS J. A., COBB J. R. Quantitation of calcium metabolism in postmenopausal osteoporosis and in scoliosis. J Clin Invest. 1963 Jun;42:898–905. doi: 10.1172/JCI104782. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beddoe A. H., Darley P. J., Spiers F. W. Measurements of trabecular bone structure in man. Phys Med Biol. 1976 Jul;21(4):589–607. doi: 10.1088/0031-9155/21/4/010. [DOI] [PubMed] [Google Scholar]
- Beddoe A. H. Measurements of the microscopic structure of cortical bone. Phys Med Biol. 1977 Mar;22(2):298–308. doi: 10.1088/0031-9155/22/2/009. [DOI] [PubMed] [Google Scholar]
- Bromley R. G., Dockum N. L., Arnold J. S., Jee W. S. Quantitative histological study of human lumbar vertebrae. J Gerontol. 1966 Oct;21(4):537–543. doi: 10.1093/geronj/21.4.537. [DOI] [PubMed] [Google Scholar]
- Dietrich K. N., Berger O. G., Succop P. A. Lead exposure and the motor developmental status of urban six-year-old children in the Cincinnati Prospective Study. Pediatrics. 1993 Feb;91(2):301–307. [PubMed] [Google Scholar]
- Dunnill M. S., Anderson J. A., Whitehead R. Quantitative histological studies on age changes in bone. J Pathol Bacteriol. 1967 Oct;94(2):275–291. doi: 10.1002/path.1700940205. [DOI] [PubMed] [Google Scholar]
- Dyson E. D., Jackson C. K., Whitehouse W. J. Scanning electron microscope studies of human trabecular bone. Nature. 1970 Mar 7;225(5236):957–959. doi: 10.1038/225957a0. [DOI] [PubMed] [Google Scholar]
- Freeman G. B., Johnson J. D., Killinger J. M., Liao S. C., Feder P. I., Davis A. O., Ruby M. V., Chaney R. L., Lovre S. C., Bergstrom P. D. Relative bioavailability of lead from mining waste soil in rats. Fundam Appl Toxicol. 1992 Oct;19(3):388–398. doi: 10.1016/0272-0590(92)90178-k. [DOI] [PubMed] [Google Scholar]
- Freeman G. B., Johnson J. D., Liao S. C., Feder P. I., Davis A. O., Ruby M. V., Schoof R. A., Chaney R. L., Bergstrom P. D. Absolute bioavailability of lead acetate and mining waste lead in rats. Toxicology. 1994 Jul 1;91(2):151–163. doi: 10.1016/0300-483x(94)90141-4. [DOI] [PubMed] [Google Scholar]
- GONG J. K., ARNOLD J. S., COHN S. H. COMPOSITION OF TRABECULAR AND CORTICAL BONE. Anat Rec. 1964 Jul;149:325–331. doi: 10.1002/ar.1091490303. [DOI] [PubMed] [Google Scholar]
- HEANEY R. P., WHEDON G. D. Radiocalcium studies of bone formation rate in human metabolic bone disease. J Clin Endocrinol Metab. 1958 Nov;18(11):1246–1267. doi: 10.1210/jcem-18-11-1246. [DOI] [PubMed] [Google Scholar]
- Inskip M. J., Franklin C. A., Baccanale C. L., Manton W. I., O'Flaherty E. J., Edwards C. M., Blenkinsop J. B., Edwards E. B. Measurement of the flux of lead from bone to blood in a nonhuman primate (Macaca fascicularis) by sequential administration of stable lead isotopes. Fundam Appl Toxicol. 1996 Oct;33(2):235–245. doi: 10.1006/faat.1996.0161. [DOI] [PubMed] [Google Scholar]
- Jerome C. P., Carlson C. S., Register T. C., Bain F. T., Jayo M. J., Weaver D. S., Adams M. R. Bone functional changes in intact, ovariectomized, and ovariectomized, hormone-supplemented adult cynomolgus monkeys (Macaca fascicularis) evaluated by serum markers and dynamic histomorphometry. J Bone Miner Res. 1994 Apr;9(4):527–540. doi: 10.1002/jbmr.5650090413. [DOI] [PubMed] [Google Scholar]
- LEE W. R., MARSHALL J. H., SISSONS H. A. CALCIUM ACCRETION AND BONE FORMATION IN DOGS: AN EXPERIMENTAL COMPARISON BETWEEN THE RESULTS OF CA-45 KINETIC ANALYSIS AND TETRACYCLINE LABELLING. J Bone Joint Surg Br. 1965 Feb;47:157–180. [PubMed] [Google Scholar]
- Leggett R. W. An age-specific kinetic model of lead metabolism in humans. Environ Health Perspect. 1993 Dec;101(7):598–616. doi: 10.1289/ehp.93101598. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leggett R. W., Eckerman K. F., Williams L. R. Strontium-90 in bone: a case study in age-dependent dosimetric modeling. Health Phys. 1982 Sep;43(3):307–322. doi: 10.1097/00004032-198209000-00001. [DOI] [PubMed] [Google Scholar]
- Lloyd E., Hodges D. Quantitative characterization of bone: a computer analysis of microradiography. Clin Orthop Relat Res. 1971;78:230–250. doi: 10.1097/00003086-197107000-00020. [DOI] [PubMed] [Google Scholar]
- Lloyd E., Rowland R. E., Hodges D., Marshall J. H. Surface to volume ratios of bone determined by computer analysis of microradiographs. Nature. 1968 Apr 27;218(5139):365–366. doi: 10.1038/218365a0. [DOI] [PubMed] [Google Scholar]
- Merz W. A., Schenk R. K. Quantitative structural analysis of human cancellous bone. Acta Anat (Basel) 1970;75(1):54–66. doi: 10.1159/000143440. [DOI] [PubMed] [Google Scholar]
- Neer R., Berman M., Fisher L., Rosenberg L. E. Multicompartmental analysis of calcium kinetics in normal adult males. J Clin Invest. 1967 Aug;46(8):1364–1379. doi: 10.1172/JCI105629. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Flaherty E. J. Physiologically based models for bone-seeking elements. I. Rat skeletal and bone growth. Toxicol Appl Pharmacol. 1991 Nov;111(2):299–312. doi: 10.1016/0041-008x(91)90032-a. [DOI] [PubMed] [Google Scholar]
- O'Flaherty E. J. Physiologically based models for bone-seeking elements. II. Kinetics of lead disposition in rats. Toxicol Appl Pharmacol. 1991 Nov;111(2):313–331. doi: 10.1016/0041-008x(91)90033-b. [DOI] [PubMed] [Google Scholar]
- O'Flaherty E. J. Physiologically based models for bone-seeking elements. III. Human skeletal and bone growth. Toxicol Appl Pharmacol. 1991 Nov;111(2):332–341. doi: 10.1016/0041-008x(91)90034-c. [DOI] [PubMed] [Google Scholar]
- O'Flaherty E. J. Physiologically based models for bone-seeking elements. IV. Kinetics of lead disposition in humans. Toxicol Appl Pharmacol. 1993 Jan;118(1):16–29. doi: 10.1006/taap.1993.1004. [DOI] [PubMed] [Google Scholar]
- O'Flaherty E. J. Physiologically based models for bone-seeking elements. V. Lead absorption and disposition in childhood. Toxicol Appl Pharmacol. 1995 Apr;131(2):297–308. doi: 10.1006/taap.1995.1072. [DOI] [PubMed] [Google Scholar]
- Polák J., O'Flaherty E. J., Freeman G. B., Johnson J. D., Liao S. C., Bergstrom P. D. Evaluating lead bioavailability data by means of a physiologically based lead kinetic model. Fundam Appl Toxicol. 1996 Jan;29(1):63–70. [PubMed] [Google Scholar]
- Pounds J. G., Leggett R. W. The ICRP age-specific biokinetic model for lead: validations, empirical comparisons, and explorations. Environ Health Perspect. 1998 Dec;106 (Suppl 6):1505–1511. doi: 10.1289/ehp.98106s61505. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rabinowitz M. B., Kopple J. D., Wetherill G. W. Effect of food intake and fasting on gastrointestinal lead absorption in humans. Am J Clin Nutr. 1980 Aug;33(8):1784–1788. doi: 10.1093/ajcn/33.8.1784. [DOI] [PubMed] [Google Scholar]
- Rubin M. I., Bruck E., Rapoport M., Snively M., McKay H., Baumler A. MATURATION OF RENAL FUNCTION IN CHILDHOOD: CLEARANCE STUDIES. J Clin Invest. 1949 Sep;28(5 Pt 2):1144–1162. doi: 10.1172/JCI102149. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sim F. H., Kelly P. J. Relationship of bone remodeling, oxygen consumption, and blood flow in bone. J Bone Joint Surg Am. 1970 Oct;52(7):1377–1389. [PubMed] [Google Scholar]
- Sontag W. Quantitative measurement of periosteal and cortical-endosteal bone formation and resorption in the midshaft of female rat femur. Bone. 1986;7(1):55–62. doi: 10.1016/8756-3282(86)90152-3. [DOI] [PubMed] [Google Scholar]
- Sontag W. Quantitative measurements of periosteal and cortical-endosteal bone formation and resorption in the midshaft of male rat femur. Bone. 1986;7(1):63–70. doi: 10.1016/8756-3282(86)90153-5. [DOI] [PubMed] [Google Scholar]
- Stevens W., Bruenger F. W., Atherton D. R., Smith J. M., Taylor G. N. The distribution and retention of hexavalent 233U in the beagle. Radiat Res. 1980 Jul;83(1):109–126. [PubMed] [Google Scholar]
- Van de Vyver F. L., D'Haese P. C., Visser W. J., Elseviers M. M., Knippenberg L. J., Lamberts L. V., Wedeen R. P., De Broe M. E. Bone lead in dialysis patients. Kidney Int. 1988 Feb;33(2):601–607. doi: 10.1038/ki.1988.39. [DOI] [PubMed] [Google Scholar]
- Vedi S., Compston J. E., Webb A., Tighe J. R. Histomorphometric analysis of dynamic parameters of trabecular bone formation in the iliac crest of normal British subjects. Metab Bone Dis Relat Res. 1983;5(2):69–74. doi: 10.1016/0221-8747(83)90004-8. [DOI] [PubMed] [Google Scholar]
- Whiteside L. A., Simmons D. J., Lesker P. A. Comparison of regional bone blood flow in areas with differing osteoblastic activity in the rabbit tibia. Clin Orthop Relat Res. 1977 May;(124):267–270. [PubMed] [Google Scholar]