Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1998 Nov;106(11):719–720. doi: 10.1289/ehp.98106719

Uterotrophic activity of bisphenol A in the immature rat.

J Ashby 1, H Tinwell 1
PMCID: PMC1533494  PMID: 9799186

Abstract

Bisphenol A (BPA) is active in immature AP rat uterotrophic assays when evaluated using either the oral or the subcutaneous (sc) injection routes of exposure (three daily administrations of 400-800 mg/kg BPA). Premature vaginal opening was seen for 8 of 14 animals exposed to 600 and 800 mg/kg BPA by sc injection. Vaginal opening was not produced by BPA in the gavage studies. These results are consistent with those of Dodds and Lawson [Nature 137:96 (1936)] who found that BPA induces persistent vaginal cornification in ovariectomized rats exposed to three twice-daily injections of 85 mg/kg BPA (total daily dose 170 mg/kg), but they conflict with the reported inactivity of BPA in the immature mouse uterotrophic assay. The uterotrophic activity of diethylstilbestrol in the rat is also established (0.04 mg/kg/day for three days).

Full text

PDF
719

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Coldham N. G., Dave M., Sivapathasundaram S., McDonnell D. P., Connor C., Sauer M. J. Evaluation of a recombinant yeast cell estrogen screening assay. Environ Health Perspect. 1997 Jul;105(7):734–742. doi: 10.1289/ehp.97105734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Feldman D. Estrogens from plastic--are we being exposed? Endocrinology. 1997 May;138(5):1777–1779. doi: 10.1210/endo.138.5.5213. [DOI] [PubMed] [Google Scholar]
  3. Nagel S. C., vom Saal F. S., Thayer K. A., Dhar M. G., Boechler M., Welshons W. V. Relative binding affinity-serum modified access (RBA-SMA) assay predicts the relative in vivo bioactivity of the xenoestrogens bisphenol A and octylphenol. Environ Health Perspect. 1997 Jan;105(1):70–76. doi: 10.1289/ehp.9710570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Odum J., Lefevre P. A., Tittensor S., Paton D., Routledge E. J., Beresford N. A., Sumpter J. P., Ashby J. The rodent uterotrophic assay: critical protocol features, studies with nonyl phenols, and comparison with a yeast estrogenicity assay. Regul Toxicol Pharmacol. 1997 Apr;25(2):176–188. doi: 10.1006/rtph.1997.1100. [DOI] [PubMed] [Google Scholar]
  5. Reel J. R., Lamb IV J. C., Neal B. H. Survey and assessment of mammalian estrogen biological assays for hazard characterization. Fundam Appl Toxicol. 1996 Dec;34(2):288–305. doi: 10.1006/faat.1996.0198. [DOI] [PubMed] [Google Scholar]
  6. Shelby M. D., Newbold R. R., Tully D. B., Chae K., Davis V. L. Assessing environmental chemicals for estrogenicity using a combination of in vitro and in vivo assays. Environ Health Perspect. 1996 Dec;104(12):1296–1300. doi: 10.1289/ehp.961041296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Steinmetz R., Brown N. G., Allen D. L., Bigsby R. M., Ben-Jonathan N. The environmental estrogen bisphenol A stimulates prolactin release in vitro and in vivo. Endocrinology. 1997 May;138(5):1780–1786. doi: 10.1210/endo.138.5.5132. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES