Abstract
Neurologic development follows orderly patterns that can be severely disturbed when thyroid hormones are deficient or excessive. Should this occur at appropriate development periods, irreversible neurologic damage can result. The nature of the deficits depends upon the specific development period and the severity of the thyroid disturbance. PCBs and dioxins are structurally similar to the thyroid hormones. Their binding characteristics are similar to those of thyroid hormones and all three groups bind to the cytosolic Ah receptor, the thyroid hormone receptor and the serum thyroid hormone binding protein transthyretin. Depending upon the dose of toxin and the congener used, the toxins either decrease or mimic the biological action of the thyroid hormones. Either effect, if occurring during brain development, can have disastrous consequences. Children and animals exposed to PCBs or dioxins in utero and/or as infants can exhibit varying degrees of behavioral disorders. These disorders resemble those seen in children exposed to thyroid hormone deficiencies in utero and/or in infancy. The mechanism of developmental neurotoxicity of PCBs and dioxins is not known but data suggest it could be partially or entirely mediated by alterations in availability and action of thyroid hormones during neurological development. It is possible that transient exposure of the mother to doses of toxins presently considered nontoxic to the mother could have an impact upon fetal or perinatal neurological development. If the toxins act via their effect on thyroid hormone action, it is possible that doses of toxins that would normally not alter fetal development, could become deleterious if superimposed on a pre-existing maternal/or fetal thyroid disorder.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adams P. M., Stein S. A., Palnitkar M., Anthony A., Gerrity L., Shanklin D. R. Evaluation and characterization of the hypothyroid hyt/hyt mouse. I: Somatic and behavioral studies. Neuroendocrinology. 1989 Feb;49(2):138–143. doi: 10.1159/000125105. [DOI] [PubMed] [Google Scholar]
- Agrawal A. K., Tilson H. A., Bondy S. C. 3,4,3',4'-Tetrachlorobiphenyl given to mice prenatally produces long-term decreases in striatal dopamine and receptor binding sites in the caudate nucleus. Toxicol Lett. 1981 Mar;7(6):417–424. doi: 10.1016/0378-4274(81)90087-4. [DOI] [PubMed] [Google Scholar]
- Bahn A. K., Mills J. L., Snyder P. J., Gann P. H., Houten L., Bialik O., Hollmann L., Utiger R. D. Hypothyroidism in workers exposed to polybrominated biphenyls. N Engl J Med. 1980 Jan 3;302(1):31–33. doi: 10.1056/NEJM198001033020105. [DOI] [PubMed] [Google Scholar]
- Bakke J. L., Lawrence N. L., Robinson S., Bennett J. Endocrine studies in the untreated F1 and F2 progeny of rats treated neonatally with thyroxine. Biol Neonate. 1977;31(1-2):71–83. doi: 10.1159/000240946. [DOI] [PubMed] [Google Scholar]
- Bastomsky C. H. Enhanced thyroxine metabolism and high uptake goiters in rats after a single dose of 2,3,7,8-tetrachlorodibenzo-p-dioxin. Endocrinology. 1977 Jul;101(1):292–296. doi: 10.1210/endo-101-1-292. [DOI] [PubMed] [Google Scholar]
- Bastomsky C. H., Murthy P. V., Banovac K. Alterations in thyroxine metabolism produced by cutaneous application of microscope immersion oil: effects due to polychlorinated biphenyls. Endocrinology. 1976 May;98(5):1309–1314. doi: 10.1210/endo-98-5-1309. [DOI] [PubMed] [Google Scholar]
- Brouwer A. Inhibition of thyroid hormone transport in plasma of rats by polychlorinated biphenyls. Arch Toxicol Suppl. 1989;13:440–445. doi: 10.1007/978-3-642-74117-3_87. [DOI] [PubMed] [Google Scholar]
- Calvo R., Obregón M. J., Ruiz de Oña C., Escobar del Rey F., Morreale de Escobar G. Congenital hypothyroidism, as studied in rats. Crucial role of maternal thyroxine but not of 3,5,3'-triiodothyronine in the protection of the fetal brain. J Clin Invest. 1990 Sep;86(3):889–899. doi: 10.1172/JCI114790. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chanoine J. P., Braverman L. E. The role of transthyretin in the transport of thyroid hormone to cerebrospinal fluid and brain. Acta Med Austriaca. 1992;19 (Suppl 1):25–28. [PubMed] [Google Scholar]
- Dussault J. H., Morissette J., Letarte J., Guyda H., Laberge C. Modification of a screening program for neonatal hypothyroidism. J Pediatr. 1978 Feb;92(2):274–277. doi: 10.1016/s0022-3476(78)80024-9. [DOI] [PubMed] [Google Scholar]
- Fierro-Benitez R., Ramirez I., Garces J., Jaramillo C., Moncayo F., Stanbury J. B. The clinical pattern of cretinism as seen in highland Ecuador. Am J Clin Nutr. 1974 May;27(5):531–543. doi: 10.1093/ajcn/27.5.531. [DOI] [PubMed] [Google Scholar]
- Francon J., Fellous A., Lennon A. M., Nunez J. Is thyroxine a regulatory signal for neurotubule assembly during brain development? Nature. 1977 Mar 10;266(5598):188–190. doi: 10.1038/266188a0. [DOI] [PubMed] [Google Scholar]
- Frost G. J. Aspects of congenital hypothyroidism. Child Care Health Dev. 1986 Nov-Dec;12(6):369–375. doi: 10.1111/j.1365-2214.1986.tb00514.x. [DOI] [PubMed] [Google Scholar]
- Galaburda A. M., Eidelberg D. Symmetry and asymmetry in the human posterior thalamus. II. Thalamic lesions in a case of developmental dyslexia. Arch Neurol. 1982 Jun;39(6):333–336. doi: 10.1001/archneur.1982.00510180011002. [DOI] [PubMed] [Google Scholar]
- Gladen B. C., Rogan W. J., Hardy P., Thullen J., Tingelstad J., Tully M. Development after exposure to polychlorinated biphenyls and dichlorodiphenyl dichloroethene transplacentally and through human milk. J Pediatr. 1988 Dec;113(6):991–995. doi: 10.1016/s0022-3476(88)80569-9. [DOI] [PubMed] [Google Scholar]
- Glorieux J., Desjardins M., Letarte J., Morissette J., Dussault J. H. Useful parameters to predict the eventual mental outcome of hypothyroid children. Pediatr Res. 1988 Jul;24(1):6–8. doi: 10.1203/00006450-198807000-00003. [DOI] [PubMed] [Google Scholar]
- Hamburgh M., Mendoza L. A., Burkart J. F., Weil F. The thyroid as a time clock in the developing nervous system. UCLA Forum Med Sci. 1971;14:321–328. [PubMed] [Google Scholar]
- Hendrich C. E., Jackson W. J., Porterfield S. P. Behavioral testing of progenies of Tx (hypothyroid) and growth hormone-treated Tx rats: an animal model for mental retardation. Neuroendocrinology. 1984 Jun;38(6):429–437. doi: 10.1159/000123931. [DOI] [PubMed] [Google Scholar]
- Heussen G. A., Hikspoors M. L., Spenkelink A., Brouwer A., Koeman J. H. Inhibition of binding of thyroxin to transthyretin by outdoor and indoor airborne particulate matter and effects on thyroid hormone and vitamin A metabolism in rats. Arch Environ Contam Toxicol. 1992 Jul;23(1):6–12. doi: 10.1007/BF00225989. [DOI] [PubMed] [Google Scholar]
- Hong L. H., McKinney J. D., Luster M. I. Modulation of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-mediated myelotoxicity by thyroid hormones. Biochem Pharmacol. 1987 Apr 15;36(8):1361–1365. doi: 10.1016/0006-2952(87)90095-5. [DOI] [PubMed] [Google Scholar]
- Jacobson J. L., Jacobson S. W., Humphrey H. E. Effects of in utero exposure to polychlorinated biphenyls and related contaminants on cognitive functioning in young children. J Pediatr. 1990 Jan;116(1):38–45. doi: 10.1016/s0022-3476(05)81642-7. [DOI] [PubMed] [Google Scholar]
- Jones W. S., Man E. B. Thyroid function in human pregnancy. VI. Premature deliveries and reproductive failures of pregnant women with low serum butanol-extractable iodines. Maternal serum TBG and TBPA capacities. Am J Obstet Gynecol. 1969 Jul 15;104(6):909–914. [PubMed] [Google Scholar]
- Lauder J. M. The effects of early hypo- and hyperthyroidism on the development of rat cerebellar cortex. III. Kinetics of cell proliferation in the external granular layer. Brain Res. 1977 Apr 22;126(1):31–51. doi: 10.1016/0006-8993(77)90213-x. [DOI] [PubMed] [Google Scholar]
- Legrand C., Clos J., Legrand J. Influence of altered thyroid and nutritional states on early histogenesis of the rat cerebellar cortex with special reference to synaptogenesis. Reprod Nutr Dev. 1982;22(1B):201–208. doi: 10.1051/rnd:19820206. [DOI] [PubMed] [Google Scholar]
- Levin E. D., Schantz S. L., Bowman R. E. Delayed spatial alternation deficits resulting from perinatal PCB exposure in monkeys. Arch Toxicol. 1988;62(4):267–273. doi: 10.1007/BF00332486. [DOI] [PubMed] [Google Scholar]
- Man E. B., Holden R. H., Jones W. S. Thyroid function in human pregnancy. VII. Development and retardation of 4-year-old progeny of euthyroid and of hypothyroxinemic women. Am J Obstet Gynecol. 1971 Jan 1;109(1):12–19. [PubMed] [Google Scholar]
- McKinney J. D., Chae K., Oatley S. J., Blake C. C. Molecular interactions of toxic chlorinated dibenzo-p-dioxins and dibenzofurans with thyroxine binding prealbumin. J Med Chem. 1985 Mar;28(3):375–381. doi: 10.1021/jm00381a018. [DOI] [PubMed] [Google Scholar]
- McKinney J. D. Multifunctional receptor model for dioxin and related compound toxic action: possible thyroid hormone-responsive effector-linked site. Environ Health Perspect. 1989 Jul;82:323–336. doi: 10.1289/ehp.8982323. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moccia R. D., Leatherland J. F., Sonstegard R. A. Increasing frequency of thyroid goiters in Coho salmon (Oncorhynchus kisutch) in the Great Lakes. Science. 1977 Oct 28;198(4315):425–426. doi: 10.1126/science.910140. [DOI] [PubMed] [Google Scholar]
- Nicholson J. L., Altman J. The effects of early hypo- and hyperthyroidism on the development of rat cerebellar cortex. I. Cell proliferation and differentiation. Brain Res. 1972 Sep 15;44(1):13–23. doi: 10.1016/0006-8993(72)90362-9. [DOI] [PubMed] [Google Scholar]
- Nunez J. Effects of thyroid hormones during brain differentiation. Mol Cell Endocrinol. 1984 Sep;37(2):125–132. doi: 10.1016/0303-7207(84)90043-1. [DOI] [PubMed] [Google Scholar]
- Overmann S. R., Kostas J., Wilson L. R., Shain W., Bush B. Neurobehavioral and somatic effects of perinatal PCB exposure in rats. Environ Res. 1987 Oct;44(1):56–70. doi: 10.1016/s0013-9351(87)80086-5. [DOI] [PubMed] [Google Scholar]
- Pazdernik T. L., Rozman K. K. Effect of thyroidectomy and thyroxine on 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced immunotoxicity. Life Sci. 1985 Feb 18;36(7):695–703. doi: 10.1016/0024-3205(85)90175-4. [DOI] [PubMed] [Google Scholar]
- Pharoah P., Connolly K., Hetzel B., Ekins R. Maternal thyroid function and motor competence in the child. Dev Med Child Neurol. 1981 Feb;23(1):76–82. doi: 10.1111/j.1469-8749.1981.tb08448.x. [DOI] [PubMed] [Google Scholar]
- Porterfield S. P., Hendrich C. E. The thyroidectomized pregnant rat--an animal model to study fetal effects of maternal hypothyroidism. Adv Exp Med Biol. 1991;299:107–132. doi: 10.1007/978-1-4684-5973-9_5. [DOI] [PubMed] [Google Scholar]
- Porterfield S. P., Hendrich C. E. Tissue iodothyronine levels in fetuses of control and hypothyroid rats at 13 and 16 days gestation. Endocrinology. 1992 Jul;131(1):195–200. doi: 10.1210/endo.131.1.1611997. [DOI] [PubMed] [Google Scholar]
- Porterfield S. P. Prenatal exposure of the fetal rat to excessive L-thyroxine or 3,5-dimethyl-3'-isopropyl-thyronine produces persistent changes in the thyroid control system. Horm Metab Res. 1985 Dec;17(12):655–659. doi: 10.1055/s-2007-1013636. [DOI] [PubMed] [Google Scholar]
- Querido A., Bleichrodt N., Djokomoeljanto R. Thyroid hormones and human mental development. Prog Brain Res. 1978;48:337–346. doi: 10.1016/S0079-6123(08)61033-X. [DOI] [PubMed] [Google Scholar]
- Rao C. V., Banerji S. A. Effect of polychlorinated biphenyl (Aroclor 1260) on histology of kidney and thyroid of rats. Indian J Exp Biol. 1990 Feb;28(2):152–154. [PubMed] [Google Scholar]
- Rickenbacher U., McKinney J. D., Oatley S. J., Blake C. C. Structurally specific binding of halogenated biphenyls to thyroxine transport protein. J Med Chem. 1986 May;29(5):641–648. doi: 10.1021/jm00155a010. [DOI] [PubMed] [Google Scholar]
- Robbins J., Lakshmanan M. The movement of thyroid hormones in the central nervous system. Acta Med Austriaca. 1992;19 (Suppl 1):21–25. [PubMed] [Google Scholar]
- Rogan W. J., Gladen B. C., Hung K. L., Koong S. L., Shih L. Y., Taylor J. S., Wu Y. C., Yang D., Ragan N. B., Hsu C. C. Congenital poisoning by polychlorinated biphenyls and their contaminants in Taiwan. Science. 1988 Jul 15;241(4863):334–336. doi: 10.1126/science.3133768. [DOI] [PubMed] [Google Scholar]
- Schantz S. L., Bowman R. E. Learning in monkeys exposed perinatally to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Neurotoxicol Teratol. 1989 Jan-Feb;11(1):13–19. doi: 10.1016/0892-0362(89)90080-9. [DOI] [PubMed] [Google Scholar]
- Seiger A., Granholm A. C. Thyroxin dependency of the developing locus coeruleus. Evidence from intraocular grafting experiments. Cell Tissue Res. 1981;220(1):1–15. doi: 10.1007/BF00209961. [DOI] [PubMed] [Google Scholar]
- Silva J. E., Matthews P. S. Production rates and turnover of triiodothyronine in rat-developing cerebral cortex and cerebellum. Responses to hypothyroidism. J Clin Invest. 1984 Sep;74(3):1035–1049. doi: 10.1172/JCI111471. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sonstegard R. A., Leatherland J. F. Hypothyroidism in rats fed Great Lakes coho salmon. Bull Environ Contam Toxicol. 1979 Aug;22(6):779–784. doi: 10.1007/BF02027024. [DOI] [PubMed] [Google Scholar]
- Sonstegard R., Leatherland J. F. The epizootiology and pathogenesis of thyroid hyperplasia in coho salmon (Oncorhynchus kisutch) in Lake Ontario. Cancer Res. 1976 Dec;36(12):4467–4475. [PubMed] [Google Scholar]
- Spear P. A., Higueret P., Garcin H. Increased thyroxine turnover after 3,3',4,4',5,5'-hexabromobiphenyl injection and lack of effect on peripheral triiodothyronine production. Can J Physiol Pharmacol. 1990 Aug;68(8):1079–1084. doi: 10.1139/y90-162. [DOI] [PubMed] [Google Scholar]
- Stanbury J. B. The pathogenesis of endemic cretinism. J Endocrinol Invest. 1984 Aug;7(4):409–419. doi: 10.1007/BF03351027. [DOI] [PubMed] [Google Scholar]
- Stein S. A., Kirkpatrick L. L., Shanklin D. R., Adams P. M., Brady S. T. Hypothyroidism reduces the rate of slow component A (SCa) axonal transport and the amount of transported tubulin in the hyt/hyt mouse optic nerve. J Neurosci Res. 1991 Jan;28(1):121–133. doi: 10.1002/jnr.490280113. [DOI] [PubMed] [Google Scholar]
- Tilson H. A., Davis G. J., McLachlan J. A., Lucier G. W. The effects of polychlorinated biphenyls given prenatally on the neurobehavioral development of mice. Environ Res. 1979 Apr;18(2):466–474. doi: 10.1016/0013-9351(79)90122-1. [DOI] [PubMed] [Google Scholar]