Abstract
Specific labeling of secondary cell walls of tracheary elements and of xylary and phloem fibers has been observed when wheat germ agglutinin (WGA) and anti-WGA antibodies were used during ultrastructural studies of French bean (Phaseolus vulgaris L.) hypocotyls. In this report we demonstrate that at least part of this labeling is due to the presence of secondary cell-wall-specific glycoproteins. Three major novel glycoproteins with relative molecular weights of 55,000, 86,000, and 90,000, purified by means of WGA-Sepharose affinity chromatography, have been characterized. Their amino acid composition indicates that they are not the members of known classes of structural cell-wall proteins, since they contain no hydroxyproline, a lower level of glycine than seen in glycine-rich proteins, and very little proline. N-terminal sequences of all three proteins show no significant homology with other proteins. Antibodies were raised against electrophoretically pure 90-kD glycoprotein. These were used to localize this protein in secondary cell walls of xylem tracheary elements and in xylary and phloem fibers, i.e. in the same compartments where labeling with WGA has been observed. To our knowledge this is one of the first biochemical and ultrastructural demonstrations of secondary cell-wall-specific glycoproteins.
Full Text
The Full Text of this article is available as a PDF (3.6 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Chamberland H., Charest P. M., Ouellette G. B., Pauzé F. J. Chitinase-gold complex used to localize chitin ultrastructurally in tomato root cells infected by Fusarium oxysporum f. sp. radicis-lycopersici, compared with a chitin specific gold-conjugated lectin. Histochem J. 1985 Mar;17(3):313–321. doi: 10.1007/BF01004593. [DOI] [PubMed] [Google Scholar]
- Demura T., Fukuda H. Molecular cloning and characterization of cDNAs associated with tracheary element differentiation in cultured Zinnia cells. Plant Physiol. 1993 Nov;103(3):815–821. doi: 10.1104/pp.103.3.815. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Demura T., Fukuda H. Novel vascular cell-specific genes whose expression is regulated temporally and spatially during vascular system development. Plant Cell. 1994 Jul;6(7):967–981. doi: 10.1105/tpc.6.7.967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gallagher J. T., Morris A., Dexter T. M. Identification of two binding sites for wheat-germ agglutinin on polylactosamine-type oligosaccharides. Biochem J. 1985 Oct 1;231(1):115–122. doi: 10.1042/bj2310115. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Iiyama K., Lam TBT., Stone B. A. Covalent Cross-Links in the Cell Wall. Plant Physiol. 1994 Feb;104(2):315–320. doi: 10.1104/pp.104.2.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keller B., Sauer N., Lamb C. J. Glycine-rich cell wall proteins in bean: gene structure and association of the protein with the vascular system. EMBO J. 1988 Dec 1;7(12):3625–3633. doi: 10.1002/j.1460-2075.1988.tb03243.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Luck G., Liao H., Murray N. J., Grimmer H. R., Warminski E. E., Williamson M. P., Lilley T. H., Haslam E. Polyphenols, astringency and proline-rich proteins. Phytochemistry. 1994 Sep;37(2):357–371. doi: 10.1016/0031-9422(94)85061-5. [DOI] [PubMed] [Google Scholar]
- Matsudaira P. Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J Biol Chem. 1987 Jul 25;262(21):10035–10038. [PubMed] [Google Scholar]
- Osawa T., Tsuji T. Fractionation and structural assessment of oligosaccharides and glycopeptides by use of immobilized lectins. Annu Rev Biochem. 1987;56:21–42. doi: 10.1146/annurev.bi.56.070187.000321. [DOI] [PubMed] [Google Scholar]
- Ryser U., Keller B. Ultrastructural Localization of a Bean Glycine-Rich Protein in Unlignified Primary Walls of Protoxylem Cells. Plant Cell. 1992 Jul;4(7):773–783. doi: 10.1105/tpc.4.7.773. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Showalter A. M. Structure and function of plant cell wall proteins. Plant Cell. 1993 Jan;5(1):9–23. doi: 10.1105/tpc.5.1.9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ye Z. H., Varner J. E. Expression of an auxin- and cytokinin-regulated gene in cambial region in Zinnia. Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6539–6543. doi: 10.1073/pnas.91.14.6539. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ye Z. H., Varner J. E. Gene expression patterns associated with in vitro tracheary element formation in isolated single mesophyll cells of Zinnia elegans. Plant Physiol. 1993 Nov;103(3):805–813. doi: 10.1104/pp.103.3.805. [DOI] [PMC free article] [PubMed] [Google Scholar]