Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1995 Dec;61(12):4184–4190. doi: 10.1128/aem.61.12.4184-4190.1995

Xylose-metabolizing Saccharomyces cerevisiae strains overexpressing the TKL1 and TAL1 genes encoding the pentose phosphate pathway enzymes transketolase and transaldolase.

M Walfridsson 1, J Hallborn 1, M Penttilä 1, S Keränen 1, B Hahn-Hägerdal 1
PMCID: PMC167730  PMID: 8534086

Abstract

Saccharomyces cerevisiae was metabolically engineered for xylose utilization. The Pichia stipitis CBS 6054 genes XYL1 and XYL2 encoding xylose reductase and xylitol dehydrogenase were cloned into S. cerevisiae. The gene products catalyze the two initial steps in xylose utilization which S. cerevisiae lacks. In order to increase the flux through the pentose phosphate pathway, the S. cerevisiae TKL1 and TAL1 genes encoding transketolase and transaldolase were overexpressed. A XYL1- and XYL2-containing S. cerevisiae strain overexpressing TAL1 (S104-TAL) showed considerably enhanced growth on xylose compared with a strain containing only XYL1 and XYL2. Overexpression of only TKL1 did not influence growth. The results indicate that the transaldolase level in S. cerevisiae is insufficient for the efficient utilization of pentose phosphate pathway metabolites. Mixtures of xylose and glucose were simultaneously consumed with the recombinant strain S104-TAL. The rate of xylose consumption was higher in the presence of glucose. Xylose was used for growth and xylitol formation, but not for ethanol production. Decreased oxygenation resulted in impaired growth and increased xylitol formation. Fermentation with strain S103-TAL, having a xylose reductase/xylitol dehydrogenase ratio of 0.5:30 compared with 4.2:5.8 for S104-TAL, did not prevent xylitol formation.

Full Text

The Full Text of this article is available as a PDF (485.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANDREASEN A. A., STIER T. J. B. Anaerobic nutrition of Saccharomyces cerevisiae. I. Ergosterol requirement for growth in a defined medium. J Cell Physiol. 1953 Feb;41(1):23–36. doi: 10.1002/jcp.1030410103. [DOI] [PubMed] [Google Scholar]
  2. ANDREASEN A. A., STIER T. J. Anaerobic nutrition of Saccharomyces cerevisiae. II. Unsaturated fatty acid requirement for growth in a defined medium. J Cell Physiol. 1954 Jun;43(3):271–281. doi: 10.1002/jcp.1030430303. [DOI] [PubMed] [Google Scholar]
  3. Ammerer G. Expression of genes in yeast using the ADCI promoter. Methods Enzymol. 1983;101:192–201. doi: 10.1016/0076-6879(83)01014-9. [DOI] [PubMed] [Google Scholar]
  4. Blomqvist K., Suihko M. L., Knowles J., Penttilä M. Chromosomal Integration and Expression of Two Bacterial alpha-Acetolactate Decarboxylase Genes in Brewer's Yeast. Appl Environ Microbiol. 1991 Oct;57(10):2796–2803. doi: 10.1128/aem.57.10.2796-2803.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Boles E., Heinisch J., Zimmermann F. K. Different signals control the activation of glycolysis in the yeast Saccharomyces cerevisiae. Yeast. 1993 Jul;9(7):761–770. doi: 10.1002/yea.320090710. [DOI] [PubMed] [Google Scholar]
  6. Boles E., Zimmermann F. K. Induction of pyruvate decarboxylase in glycolysis mutants of Saccharomyces cerevisiae correlates with the concentrations of three-carbon glycolytic metabolites. Arch Microbiol. 1993;160(4):324–328. doi: 10.1007/BF00292085. [DOI] [PubMed] [Google Scholar]
  7. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  8. Bruinenberg P. M., van Dijken J. P., Scheffers W. A. An enzymic analysis of NADPH production and consumption in Candida utilis. J Gen Microbiol. 1983 Apr;129(4):965–971. doi: 10.1099/00221287-129-4-965. [DOI] [PubMed] [Google Scholar]
  9. Busturia A., Lagunas R. Catabolite inactivation of the glucose transport system in Saccharomyces cerevisiae. J Gen Microbiol. 1986 Feb;132(2):379–385. doi: 10.1099/00221287-132-2-379. [DOI] [PubMed] [Google Scholar]
  10. Chiang L. C., Gong C. S., Chen L. F., Tsao G. T. d-Xylulose Fermentation to Ethanol by Saccharomyces cerevisiae. Appl Environ Microbiol. 1981 Aug;42(2):284–289. doi: 10.1128/aem.42.2.284-289.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hallborn J., Walfridsson M., Airaksinen U., Ojamo H., Hahn-Hägerdal B., Penttilä M., Keräsnen S. Xylitol production by recombinant Saccharomyces cerevisiae. Biotechnology (N Y) 1991 Nov;9(11):1090–1095. doi: 10.1038/nbt1191-1090. [DOI] [PubMed] [Google Scholar]
  12. Hallborn J., Walfridsson M., Penttilä M., Keränen S., Hahn-Hägerdal B. A short-chain dehydrogenase gene from Pichia stipitis having D-arabinitol dehydrogenase activity. Yeast. 1995 Jul;11(9):839–847. doi: 10.1002/yea.320110906. [DOI] [PubMed] [Google Scholar]
  13. Heinisch J., Vogelsang K., Hollenberg C. P. Transcriptional control of yeast phosphofructokinase gene expression. FEBS Lett. 1991 Sep 2;289(1):77–82. doi: 10.1016/0014-5793(91)80912-m. [DOI] [PubMed] [Google Scholar]
  14. Jeppsson H., Alexander N. J., Hahn-Hagerdal B. Existence of Cyanide-Insensitive Respiration in the Yeast Pichia stipitis and Its Possible Influence on Product Formation during Xylose Utilization. Appl Environ Microbiol. 1995 Jul;61(7):2596–2600. doi: 10.1128/aem.61.7.2596-2600.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mellor J., Dobson M. J., Roberts N. A., Tuite M. F., Emtage J. S., White S., Lowe P. A., Patel T., Kingsman A. J., Kingsman S. M. Efficient synthesis of enzymatically active calf chymosin in Saccharomyces cerevisiae. Gene. 1983 Sep;24(1):1–14. doi: 10.1016/0378-1119(83)90126-9. [DOI] [PubMed] [Google Scholar]
  16. Metzger M. H., Hollenberg C. P. Isolation and characterization of the Pichia stipitis transketolase gene and expression in a xylose-utilising Saccharomyces cerevisiae transformant. Appl Microbiol Biotechnol. 1994 Nov;42(2-3):319–325. doi: 10.1007/BF00902736. [DOI] [PubMed] [Google Scholar]
  17. Ohta K., Beall D. S., Mejia J. P., Shanmugam K. T., Ingram L. O. Genetic improvement of Escherichia coli for ethanol production: chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II. Appl Environ Microbiol. 1991 Apr;57(4):893–900. doi: 10.1128/aem.57.4.893-900.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sarthy A. V., McConaughy B. L., Lobo Z., Sundstrom J. A., Furlong C. E., Hall B. D. Expression of the Escherichia coli xylose isomerase gene in Saccharomyces cerevisiae. Appl Environ Microbiol. 1987 Sep;53(9):1996–2000. doi: 10.1128/aem.53.9.1996-2000.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Schiestl R. H., Gietz R. D. High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr Genet. 1989 Dec;16(5-6):339–346. doi: 10.1007/BF00340712. [DOI] [PubMed] [Google Scholar]
  20. Senac T., Hahn-Hägerdal B. Effects of increased transaldolase activity on D-xylulose and D-glucose metabolism in Saccharomyces cerevisiae cell extracts. Appl Environ Microbiol. 1991 Jun;57(6):1701–1706. doi: 10.1128/aem.57.6.1701-1706.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Senac T., Hahn-Hägerdal B. Intermediary Metabolite Concentrations in Xylulose- and Glucose-Fermenting Saccharomyces cerevisiae Cells. Appl Environ Microbiol. 1990 Jan;56(1):120–126. doi: 10.1128/aem.56.1.120-126.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Skoog K., Hahn-Hägerdal B. Effect of Oxygenation on Xylose Fermentation by Pichia stipitis. Appl Environ Microbiol. 1990 Nov;56(11):3389–3394. doi: 10.1128/aem.56.11.3389-3394.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Wang P. Y., Shopsis C., Schneider H. Fermentation of a pentose by yeasts. Biochem Biophys Res Commun. 1980 May 14;94(1):248–254. doi: 10.1016/s0006-291x(80)80213-0. [DOI] [PubMed] [Google Scholar]
  24. Zhang M., Eddy C., Deanda K., Finkelstein M., Picataggio S. Metabolic Engineering of a Pentose Metabolism Pathway in Ethanologenic Zymomonas mobilis. Science. 1995 Jan 13;267(5195):240–243. doi: 10.1126/science.267.5195.240. [DOI] [PubMed] [Google Scholar]
  25. von Sivers M., Zacchi G., Olsson L., Hahn-Hägerdal B. Cost analysis of ethanol production from willow using recombinant Escherichia coli. Biotechnol Prog. 1994 Sep-Oct;10(5):555–560. doi: 10.1021/bp00029a017. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES