Abstract
The heterozygous human serum paraoxonase phenotype can be clearly distinguished from both homozygous phenotypes on the basis of its distinctive ratio of paraoxonase to arylesterase activities. A trimodal distribution of the ratio values was found with 348 individual serum samples, measuring the ratio of paraoxonase activity (with 1 M NaCl in the assay) to arylesterase activity, using phenylacetate. The three modes corresponded to the three paraoxonase phenotypes, A, AB, and B (individual genotypes), and the expected Mendelian segregation of the trait was observed within families. The paraoxonase/arylesterase activity ratio showed codominant inheritance. We have defined the genetic locus determining the aromatic esterase (arylesterase) responsible for the polymorphic paraoxonase activity as esterase-A (ESA) and have designated the two common alleles at this locus by the symbols ESA*A and ESA*B. The frequency of the ESA*A allele was estimated to be .685, and that of the ESA*B allele, 0.315, in a sample population of unrelated Caucasians from the United States. We postulate that a single serum enzyme, with both paraoxonase and arylesterase activity, exists in two different isozymic forms with qualitatively different properties, and that paraoxon is a "discriminating" substrate (having a polymorphic distribution of activity) and phenylacetate is a "nondiscriminating" substrate for the two isozymes. Biochemical evidence for this interpretation includes the cosegregation of the degree of stimulation of paraoxonase activity by salt and paraoxonase/arylesterase activity ratio characteristics; the very high correlation between both the basal (non-salt stimulated) and salt-stimulated paraoxonase activities with arylesterase activity; and the finding that phenylacetate is an inhibitor for paraoxonase activities in both A and B types of enzyme.
Full text
PDF












Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- AUGUSTINSSON K. B. ARYLESTERASES. J Histochem Cytochem. 1964 Oct;12:744–747. doi: 10.1177/12.10.744. [DOI] [PubMed] [Google Scholar]
- AUGUSTINSSON K. B. Electrophoretic separation and classification of blood plasma esterases. Nature. 1958 Jun 28;181(4626):1786–1789. doi: 10.1038/1811786a0. [DOI] [PubMed] [Google Scholar]
- Bachorik P. S., Wood P. D., Albers J. J., Steiner P., Dempsey M., Kuba K., Warnick R., Karlsson L. Plasma high-density lipoprotein cholesterol concentrations determined after removal of other lipoproteins by heparin/manganese precipitation or by ultracentrifugation. Clin Chem. 1976 Nov;22(11):1828–1834. [PubMed] [Google Scholar]
- Burlina A., Michielin E., Galzigna L. Characteristics and behaviour of arylesterase in human serum and liver. Eur J Clin Invest. 1977 Feb;7(1):17–20. doi: 10.1111/j.1365-2362.1977.tb01564.x. [DOI] [PubMed] [Google Scholar]
- Carro-Ciampi G., Kadar D., Kalow W. Distribution of serum paraoxon hydrolyzing activities in a Canadian population. Can J Physiol Pharmacol. 1981 Aug;59(8):904–907. doi: 10.1139/y81-138. [DOI] [PubMed] [Google Scholar]
- Don M. M., Masters C. J., Winzor D. J. Further evidence for the concept of bovine plasma arylesterase as a lipoprotein. Biochem J. 1975 Dec;151(3):625–630. doi: 10.1042/bj1510625. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ERDOS E. G., BOGGS L. E. Hydrolysis of paraoxon in mammalian blood. Nature. 1961 May 20;190:716–717. doi: 10.1038/190716a0. [DOI] [PubMed] [Google Scholar]
- ERDOS E. G., DEBAY C. R., WESTERMAN M. P. Arylesterases in blood: effect of calcium and inhibitors. Biochem Pharmacol. 1960 Nov;5:173–186. doi: 10.1016/0006-2952(60)90061-7. [DOI] [PubMed] [Google Scholar]
- Eckerson H. W., Romson J., Wyte C., La Du B. N. The human serum paraoxonase polymorphism: identification of phenotypes by their response to salts. Am J Hum Genet. 1983 Mar;35(2):214–227. [PMC free article] [PubMed] [Google Scholar]
- Eiberg H., Mohr J. Genetics of paraoxonase. Ann Hum Genet. 1981 Oct;45(Pt 4):323–330. doi: 10.1111/j.1469-1809.1981.tb00345.x. [DOI] [PubMed] [Google Scholar]
- Flügel M., Geldmacher-von Mallinckrodt M. Zur Kinetik des Paraoxon-spaltenden Enzyms im menschlichen Serum (EC 3.1.1.2). Klin Wochenschr. 1978 Sep 15;56(18):911–916. doi: 10.1007/BF01489217. [DOI] [PubMed] [Google Scholar]
- Geldmacher-v Mallinckrodt M., Hommel G., Dumbach J. On the genetics of the human serum paraoxonase (EC 3.1.1.2). Hum Genet. 1979 Sep;50(3):313–326. doi: 10.1007/BF00399398. [DOI] [PubMed] [Google Scholar]
- Geldmacher-von Mallinck, Lindorf H. H., Petenyi M., Flügel M., Fischer T., Hiller T. Genetisch determinierter Polymorphismus der menschlichen Serum-Paraoxonase (EC 3.1.1.2. Humangenetik. 1973;17(4):331–335. [PubMed] [Google Scholar]
- Hein D. W., Hirata M., Glowinski I. B., Weber W. W. Biochemical evidence for the coexistence of monomorphic and polymorphic N-acetyltransferase activities on a common protein in rabbit liver. J Pharmacol Exp Ther. 1982 Jan;220(1):1–7. [PubMed] [Google Scholar]
- Kitchen B. J., Masters C. J., Winzor D. J. Effects of lipid removal on the molecular size and kinetic properties of bovine plasma arylesterase. Biochem J. 1973 Sep;135(1):93–99. doi: 10.1042/bj1350093. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krisch K. Enzymatische Hydrolyse von Diäthyl-p-nitrophenylphosphat (E 600) durch menschlichen Serum. Z Klin Chem Klin Biochem. 1968 Jan;6(1):41–45. [PubMed] [Google Scholar]
- MAIN A. R. The differentiation of the A-type esterases in sheep serum. Biochem J. 1960 Apr;75:188–195. doi: 10.1042/bj0750188. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MAIN A. R. The purification of the enzyme hydrolysing diethyl p-nitrophenyl phosphate (paraoxon) in sheep serum. Biochem J. 1960 Jan;74:10–20. doi: 10.1042/bj0740010. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MARTON A. V., KALOW W. Interaction between aromatic esterase of human serum and bivalent metal ions. Can J Biochem Physiol. 1962 Mar;40:319–324. [PubMed] [Google Scholar]
- MOUNTER L. A., WHITTAKER V. P. The hydrolysis of esters of phenol by cholinesterases and other esterases. Biochem J. 1953 Jul;54(4):551–559. doi: 10.1042/bj0540551. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mendoza C. E., Shields J. B., Augustinsson K. B. Arylesterases from various mammalian sera in relation to cholinesterases, carboxylesterases and their activity towards some pesticides. Comp Biochem Physiol C. 1976;55(1):23–26. doi: 10.1016/0306-4492(76)90006-x. [DOI] [PubMed] [Google Scholar]
- Patterson E., Radtke H. E., Weber W. W. Immunochemical studies of rabbit N-acetyltransferases. Mol Pharmacol. 1980 May;17(3):367–373. [PubMed] [Google Scholar]
- Playfer J. R., Eze L. C., Bullen M. F., Evans D. A. Genetic polymorphism and interethnic variability of plasma paroxonase activity. J Med Genet. 1976 Oct;13(5):337–342. doi: 10.1136/jmg.13.5.337. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simpson N. E. Serum arylesterase levels of activity in twins and their parents. Am J Hum Genet. 1971 Jul;23(4):375–382. [PMC free article] [PubMed] [Google Scholar]
- Wille L. E. A simple and rapid method for isolation of serum lipoproteins from the other serum protein constituents. Clin Chim Acta. 1976 Sep 6;71(2):355–357. doi: 10.1016/0009-8981(76)90554-4. [DOI] [PubMed] [Google Scholar]
- ZELLER E. A. Enzymology of the refractory media of the eye. IV. Direct photometric determination of cholinesterase and aliesterase of corpus vitreum. Arch Biochem Biophys. 1956 Mar;61(1):231–240. doi: 10.1016/0003-9861(56)90335-6. [DOI] [PubMed] [Google Scholar]
- Zech R., Zürcher K. Organophosphate splitting serum enzymes in different mammals. Comp Biochem Physiol B. 1974 Jul 15;48(3):427–433. doi: 10.1016/0305-0491(74)90277-6. [DOI] [PubMed] [Google Scholar]