Abstract
In higher eukaryotes, glucosylceramide is the simplest member and precursor of a fascinating class of membrane lipids, the glycosphingolipids. These lipids display an astounding variation in their carbohydrate head groups, suggesting that glycosphingolipids serve specialized functions in recognition processes. It is now realized that they are organized in signalling domains on the cell surface. They are of vital importance as, in their absence, embryonal development is inhibited at an early stage. Remarkably, individual cells can live without glycolipids, perhaps because their survival does not depend on glycosphingolipid-mediated signalling mechanisms. Still, these cells suffer from defects in intracellular membrane transport. Various membrane proteins do not reach their intracellular destination, and, indeed, some intracellular organelles do not properly differentiate to their mature stage. The fact that glycosphingolipids are required for cellular differentiation suggests that there are human diseases resulting from defects in glycosphingolipid synthesis. In addition, the same cellular differentiation processes may be affected by defects in the degradation of glycosphingolipids. At the cellular level, the pathology of glycosphingolipid storage diseases is not completely understood. Cell biological studies on the intracellular fate and function of glycosphingolipids may open new ways to understand and defeat not only lipid storage diseases, but perhaps other diseases that have not been connected to glycosphingolipids so far.
Full Text
The Full Text of this article is available as a PDF (452.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Borst P., Elferink R. Oude. Mammalian ABC transporters in health and disease. Annu Rev Biochem. 2001 Nov 9;71:537–592. doi: 10.1146/annurev.biochem.71.102301.093055. [DOI] [PubMed] [Google Scholar]
- Bretscher M. S., Munro S. Cholesterol and the Golgi apparatus. Science. 1993 Sep 3;261(5126):1280–1281. doi: 10.1126/science.8362242. [DOI] [PubMed] [Google Scholar]
- Coste H., Martel M. B., Got R. Topology of glucosylceramide synthesis in Golgi membranes from porcine submaxillary glands. Biochim Biophys Acta. 1986 Jun 13;858(1):6–12. doi: 10.1016/0005-2736(86)90285-3. [DOI] [PubMed] [Google Scholar]
- Dell'Angelica E. C., Ohno H., Ooi C. E., Rabinovich E., Roche K. W., Bonifacino J. S. AP-3: an adaptor-like protein complex with ubiquitous expression. EMBO J. 1997 Mar 3;16(5):917–928. doi: 10.1093/emboj/16.5.917. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dell'Angelica E. C., Shotelersuk V., Aguilar R. C., Gahl W. A., Bonifacino J. S. Altered trafficking of lysosomal proteins in Hermansky-Pudlak syndrome due to mutations in the beta 3A subunit of the AP-3 adaptor. Mol Cell. 1999 Jan;3(1):11–21. doi: 10.1016/s1097-2765(00)80170-7. [DOI] [PubMed] [Google Scholar]
- Dietrich C., Bagatolli L. A., Volovyk Z. N., Thompson N. L., Levi M., Jacobson K., Gratton E. Lipid rafts reconstituted in model membranes. Biophys J. 2001 Mar;80(3):1417–1428. doi: 10.1016/S0006-3495(01)76114-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Feng Lijun, Novak Edward K., Hartnell Lisa M., Bonifacino Juan S., Collinson Lucy M., Swank Richard T. The Hermansky-Pudlak syndrome 1 (HPS1) and HPS2 genes independently contribute to the production and function of platelet dense granules, melanosomes, and lysosomes. Blood. 2002 Mar 1;99(5):1651–1658. [PubMed] [Google Scholar]
- Futerman A. H., Pagano R. E. Determination of the intracellular sites and topology of glucosylceramide synthesis in rat liver. Biochem J. 1991 Dec 1;280(Pt 2):295–302. doi: 10.1042/bj2800295. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gómez-Móuton C., Abad J. L., Mira E., Lacalle R. A., Gallardo E., Jiménez-Baranda S., Illa I., Bernad A., Mañes S., Martínez-A C. Segregation of leading-edge and uropod components into specific lipid rafts during T cell polarization. Proc Natl Acad Sci U S A. 2001 Aug 7;98(17):9642–9647. doi: 10.1073/pnas.171160298. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hakomori Si Sen-itiroh. The glycosynapse. Proc Natl Acad Sci U S A. 2002 Jan 2;99(1):225–232. doi: 10.1073/pnas.012540899. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hannun Y. A., Bell R. M. Lysosphingolipids inhibit protein kinase C: implications for the sphingolipidoses. Science. 1987 Feb 6;235(4789):670–674. doi: 10.1126/science.3101176. [DOI] [PubMed] [Google Scholar]
- Harder Thomas. Formation of functional cell membrane domains: the interplay of lipid- and protein-mediated interactions. Philos Trans R Soc Lond B Biol Sci. 2003 May 29;358(1433):863–868. doi: 10.1098/rstb.2003.1274. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Horrocks L. A. Composition of myelin from peripheral and central nervous systems of the squirrel monkey. J Lipid Res. 1967 Nov;8(6):569–576. [PubMed] [Google Scholar]
- Höning S., Sandoval I. V., von Figura K. A di-leucine-based motif in the cytoplasmic tail of LIMP-II and tyrosinase mediates selective binding of AP-3. EMBO J. 1998 Aug 10;17(5):1304–1314. doi: 10.1093/emboj/17.5.1304. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ichikawa S., Sakiyama H., Suzuki G., Hidari K. I., Hirabayashi Y. Expression cloning of a cDNA for human ceramide glucosyltransferase that catalyzes the first glycosylation step of glycosphingolipid synthesis. Proc Natl Acad Sci U S A. 1996 May 14;93(10):4638–4643. doi: 10.1073/pnas.93.10.4638. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jeckel D., Karrenbauer A., Burger K. N., van Meer G., Wieland F. Glucosylceramide is synthesized at the cytosolic surface of various Golgi subfractions. J Cell Biol. 1992 Apr;117(2):259–267. doi: 10.1083/jcb.117.2.259. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kantheti P., Qiao X., Diaz M. E., Peden A. A., Meyer G. E., Carskadon S. L., Kapfhamer D., Sufalko D., Robinson M. S., Noebels J. L. Mutation in AP-3 delta in the mocha mouse links endosomal transport to storage deficiency in platelets, melanosomes, and synaptic vesicles. Neuron. 1998 Jul;21(1):111–122. doi: 10.1016/s0896-6273(00)80519-x. [DOI] [PubMed] [Google Scholar]
- Lala P., Ito S., Lingwood C. A. Retroviral transfection of Madin-Darby canine kidney cells with human MDR1 results in a major increase in globotriaosylceramide and 10(5)- to 10(6)-fold increased cell sensitivity to verocytotoxin. Role of p-glycoprotein in glycolipid synthesis. J Biol Chem. 2000 Mar 3;275(9):6246–6251. doi: 10.1074/jbc.275.9.6246. [DOI] [PubMed] [Google Scholar]
- Lannert H., Bünning C., Jeckel D., Wieland F. T. Lactosylceramide is synthesized in the lumen of the Golgi apparatus. FEBS Lett. 1994 Mar 28;342(1):91–96. doi: 10.1016/0014-5793(94)80591-1. [DOI] [PubMed] [Google Scholar]
- Lin X., Mattjus P., Pike H. M., Windebank A. J., Brown R. E. Cloning and expression of glycolipid transfer protein from bovine and porcine brain. J Biol Chem. 2000 Feb 18;275(7):5104–5110. doi: 10.1074/jbc.275.7.5104. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pierce Susan K. Lipid rafts and B-cell activation. Nat Rev Immunol. 2002 Feb;2(2):96–105. doi: 10.1038/nri726. [DOI] [PubMed] [Google Scholar]
- Raggers R. J., van Helvoort A., Evers R., van Meer G. The human multidrug resistance protein MRP1 translocates sphingolipid analogs across the plasma membrane. J Cell Sci. 1999 Feb;112(Pt 3):415–422. doi: 10.1242/jcs.112.3.415. [DOI] [PubMed] [Google Scholar]
- Raposo Graça, Marks Michael S. The dark side of lysosome-related organelles: specialization of the endocytic pathway for melanosome biogenesis. Traffic. 2002 Apr;3(4):237–248. doi: 10.1034/j.1600-0854.2002.030401.x. [DOI] [PubMed] [Google Scholar]
- Sandhoff Konrad, Kolter Thomas. Biosynthesis and degradation of mammalian glycosphingolipids. Philos Trans R Soc Lond B Biol Sci. 2003 May 29;358(1433):847–861. doi: 10.1098/rstb.2003.1265. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schnitzer J. E., McIntosh D. P., Dvorak A. M., Liu J., Oh P. Separation of caveolae from associated microdomains of GPI-anchored proteins. Science. 1995 Sep 8;269(5229):1435–1439. doi: 10.1126/science.7660128. [DOI] [PubMed] [Google Scholar]
- Sillence D. J., Raggers R. J., Neville D. C., Harvey D. J., van Meer G. Assay for the transbilayer distribution of glycolipids. Selective oxidation of glucosylceramide to glucuronylceramide by TEMPO nitroxyl radicals. J Lipid Res. 2000 Aug;41(8):1252–1260. [PubMed] [Google Scholar]
- Simons K., van Meer G. Lipid sorting in epithelial cells. Biochemistry. 1988 Aug 23;27(17):6197–6202. doi: 10.1021/bi00417a001. [DOI] [PubMed] [Google Scholar]
- Sprong H., Degroote S., Claessens T., van Drunen J., Oorschot V., Westerink B. H., Hirabayashi Y., Klumperman J., van der Sluijs P., van Meer G. Glycosphingolipids are required for sorting melanosomal proteins in the Golgi complex. J Cell Biol. 2001 Oct 22;155(3):369–380. doi: 10.1083/jcb.200106104. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamashita T., Wada R., Sasaki T., Deng C., Bierfreund U., Sandhoff K., Proia R. L. A vital role for glycosphingolipid synthesis during development and differentiation. Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):9142–9147. doi: 10.1073/pnas.96.16.9142. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Genderen I. L., van Meer G., Slot J. W., Geuze H. J., Voorhout W. F. Subcellular localization of Forssman glycolipid in epithelial MDCK cells by immuno-electronmicroscopy after freeze-substitution. J Cell Biol. 1991 Nov;115(4):1009–1019. doi: 10.1083/jcb.115.4.1009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Helvoort A., Smith A. J., Sprong H., Fritzsche I., Schinkel A. H., Borst P., van Meer G. MDR1 P-glycoprotein is a lipid translocase of broad specificity, while MDR3 P-glycoprotein specifically translocates phosphatidylcholine. Cell. 1996 Nov 1;87(3):507–517. doi: 10.1016/s0092-8674(00)81370-7. [DOI] [PubMed] [Google Scholar]
- van Meer Gerrit. Cell biology. The different hues of lipid rafts. Science. 2002 May 3;296(5569):855–857. doi: 10.1126/science.1071491. [DOI] [PubMed] [Google Scholar]
- van Weely S., Brandsma M., Strijland A., Tager J. M., Aerts J. M. Demonstration of the existence of a second, non-lysosomal glucocerebrosidase that is not deficient in Gaucher disease. Biochim Biophys Acta. 1993 Mar 24;1181(1):55–62. doi: 10.1016/0925-4439(93)90090-n. [DOI] [PubMed] [Google Scholar]