Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2004 Jun 29;359(1446):965–986. doi: 10.1098/rstb.2003.1414

Virulence in malaria: an evolutionary viewpoint.

Margaret J Mackinnon 1, Andrew F Read 1
PMCID: PMC1693375  PMID: 15306410

Abstract

Malaria parasites cause much morbidity and mortality to their human hosts. From our evolutionary perspective, this is because virulence is positively associated with parasite transmission rate. Natural selection therefore drives virulence upwards, but only to the point where the cost to transmission caused by host death begins to outweigh the transmission benefits. In this review, we summarize data from the laboratory rodent malaria model, Plasmodium chabaudi, and field data on the human malaria parasite, P. falciparum, in relation to this virulence trade-off hypothesis. The data from both species show strong positive correlations between asexual multiplication, transmission rate, infection length, morbidity and mortality, and therefore support the underlying assumptions of the hypothesis. Moreover, the P. falciparum data show that expected total lifetime transmission of the parasite is maximized in young children in whom the fitness cost of host mortality balances the fitness benefits of higher transmission rates and slower clearance rates, thus exhibiting the hypothesized virulence trade-off. This evolutionary explanation of virulence appears to accord well with the clinical and molecular explanations of pathogenesis that involve cytoadherence, red cell invasion and immune evasion, although direct evidence of the fitness advantages of these mechanisms is scarce. One implication of this evolutionary view of virulence is that parasite populations are expected to evolve new levels of virulence in response to medical interventions such as vaccines and drugs.

Full Text

The Full Text of this article is available as a PDF (377.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALGER N. E. Distribution of schizonts of Plasmodium berghel in tissues of rats, mice and hamsters. J Protozool. 1963 Feb;10:6–10. doi: 10.1111/j.1550-7408.1963.tb01633.x. [DOI] [PubMed] [Google Scholar]
  2. Abdel-Latif Mohamed S., Khattab Ayman, Lindenthal Christoph, Kremsner Peter G., Klinkert Mo-Quen. Recognition of variant Rifin antigens by human antibodies induced during natural Plasmodium falciparum infections. Infect Immun. 2002 Dec;70(12):7013–7021. doi: 10.1128/IAI.70.12.7013-7021.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Aguiar J. C., Albrecht G. R., Cegielski P., Greenwood B. M., Jensen J. B., Lallinger G., Martinez A., McGregor I. A., Minjas J. N., Neequaye J. Agglutination of Plasmodium falciparum-infected erythrocytes from east and west African isolates by human sera from distant geographic regions. Am J Trop Med Hyg. 1992 Nov;47(5):621–632. doi: 10.4269/ajtmh.1992.47.621. [DOI] [PubMed] [Google Scholar]
  4. Aitman T. J., Cooper L. D., Norsworthy P. J., Wahid F. N., Gray J. K., Curtis B. R., McKeigue P. M., Kwiatkowski D., Greenwood B. M., Snow R. W. Malaria susceptibility and CD36 mutation. Nature. 2000 Jun 29;405(6790):1015–1016. doi: 10.1038/35016636. [DOI] [PubMed] [Google Scholar]
  5. Allan R. J., Rowe A., Kwiatkowski D. Plasmodium falciparum varies in its ability to induce tumor necrosis factor. Infect Immun. 1993 Nov;61(11):4772–4776. doi: 10.1128/iai.61.11.4772-4776.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Alles H. K., Mendis K. N., Carter R. Malaria mortality rates in South Asia and in Africa: implications for malaria control. Parasitol Today. 1998 Sep;14(9):369–375. doi: 10.1016/s0169-4758(98)01296-4. [DOI] [PubMed] [Google Scholar]
  7. Angkasekwinai P., Looareesuwan S., Chaiyaroj S. C. Lack of significant association between rosette formation and parasitized erythrocyte adherence to purified CD36. Southeast Asian J Trop Med Public Health. 1998 Mar;29(1):41–45. [PubMed] [Google Scholar]
  8. Angus B. J., Thanikkul K., Silamut K., White N. J., Udomsangpetch R. Short report: Rosette formation in Plasmodium ovale infection. Am J Trop Med Hyg. 1996 Nov;55(5):560–561. doi: 10.4269/ajtmh.1996.55.560. [DOI] [PubMed] [Google Scholar]
  9. Baird J. K. Age-dependent characteristics of protection v. susceptibility to Plasmodium falciparum. Ann Trop Med Parasitol. 1998 Jun;92(4):367–390. doi: 10.1080/00034989859366. [DOI] [PubMed] [Google Scholar]
  10. Barnwell J. W., Howard R. J., Coon H. G., Miller L. H. Splenic requirement for antigenic variation and expression of the variant antigen on the erythrocyte membrane in cloned Plasmodium knowlesi malaria. Infect Immun. 1983 Jun;40(3):985–994. doi: 10.1128/iai.40.3.985-994.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Barragan A., Kremsner P. G., Weiss W., Wahlgren M., Carlson J. Age-related buildup of humoral immunity against epitopes for rosette formation and agglutination in African areas of malaria endemicity. Infect Immun. 1998 Oct;66(10):4783–4787. doi: 10.1128/iai.66.10.4783-4787.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Baruch D. I., Pasloske B. L., Singh H. B., Bi X., Ma X. C., Feldman M., Taraschi T. F., Howard R. J. Cloning the P. falciparum gene encoding PfEMP1, a malarial variant antigen and adherence receptor on the surface of parasitized human erythrocytes. Cell. 1995 Jul 14;82(1):77–87. doi: 10.1016/0092-8674(95)90054-3. [DOI] [PubMed] [Google Scholar]
  13. Bekessy A., Molineaux L., Storey J. Estimation of incidence and recovery rates of Plasmodium falciparum parasitaemia from longitudinal data. Bull World Health Organ. 1976;54(6):685–693. [PMC free article] [PubMed] [Google Scholar]
  14. Berendt A. R., Ferguson D. J., Gardner J., Turner G., Rowe A., McCormick C., Roberts D., Craig A., Pinches R., Elford B. C. Molecular mechanisms of sequestration in malaria. Parasitology. 1994;108 (Suppl):S19–S28. doi: 10.1017/s0031182000075685. [DOI] [PubMed] [Google Scholar]
  15. Bergstrom C. T., McElhany P., Real L. A. Transmission bottlenecks as determinants of virulence in rapidly evolving pathogens. Proc Natl Acad Sci U S A. 1999 Apr 27;96(9):5095–5100. doi: 10.1073/pnas.96.9.5095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Berkley J., Mwarumba S., Bramham K., Lowe B., Marsh K. Bacteraemia complicating severe malaria in children. Trans R Soc Trop Med Hyg. 1999 May-Jun;93(3):283–286. doi: 10.1016/s0035-9203(99)90024-x. [DOI] [PubMed] [Google Scholar]
  17. Biggs B. A., Goozé L., Wycherley K., Wollish W., Southwell B., Leech J. H., Brown G. V. Antigenic variation in Plasmodium falciparum. Proc Natl Acad Sci U S A. 1991 Oct 15;88(20):9171–9174. doi: 10.1073/pnas.88.20.9171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Brannan L. R., Turner C. M., Phillips R. S. Malaria parasites undergo antigenic variation at high rates in vivo. Proc Biol Sci. 1994 Apr 22;256(1345):71–75. doi: 10.1098/rspb.1994.0051. [DOI] [PubMed] [Google Scholar]
  19. Brown K. N. Antibody induced variation in malaria parasites. Nature. 1973 Mar 2;242(5392):49–50. doi: 10.1038/242049a0. [DOI] [PubMed] [Google Scholar]
  20. Brown K. N., Brown I. N. Immunity to malaria: antigenic variation in chronic infections of Plasmodium knowlesi. Nature. 1965 Dec 25;208(5017):1286–1288. doi: 10.1038/2081286a0. [DOI] [PubMed] [Google Scholar]
  21. Brown Sam P., Hochberg Michael E., Grenfell Bryan T. Does multiple infection select for raised virulence? Trends Microbiol. 2002 Sep;10(9):401–405. doi: 10.1016/s0966-842x(02)02413-7. [DOI] [PubMed] [Google Scholar]
  22. Bruce M. C., Donnelly C. A., Alpers M. P., Galinski M. R., Barnwell J. W., Walliker D., Day K. P. Cross-species interactions between malaria parasites in humans. Science. 2000 Feb 4;287(5454):845–848. doi: 10.1126/science.287.5454.845. [DOI] [PubMed] [Google Scholar]
  23. Buckling A., Read A. F. The effect of partial host immunity on the transmission of malaria parasites. Proc Biol Sci. 2001 Nov 22;268(1483):2325–2330. doi: 10.1098/rspb.2001.1808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Bull P. C., Kortok M., Kai O., Ndungu F., Ross A., Lowe B. S., Newbold C. I., Marsh K. Plasmodium falciparum-infected erythrocytes: agglutination by diverse Kenyan plasma is associated with severe disease and young host age. J Infect Dis. 2000 Jun 30;182(1):252–259. doi: 10.1086/315652. [DOI] [PubMed] [Google Scholar]
  25. Bull P. C., Lowe B. S., Kortok M., Marsh K. Antibody recognition of Plasmodium falciparum erythrocyte surface antigens in Kenya: evidence for rare and prevalent variants. Infect Immun. 1999 Feb;67(2):733–739. doi: 10.1128/iai.67.2.733-739.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Bull P. C., Lowe B. S., Kortok M., Molyneux C. S., Newbold C. I., Marsh K. Parasite antigens on the infected red cell surface are targets for naturally acquired immunity to malaria. Nat Med. 1998 Mar;4(3):358–360. doi: 10.1038/nm0398-358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Bull Peter C., Marsh Kevin. The role of antibodies to Plasmodium falciparum-infected-erythrocyte surface antigens in naturally acquired immunity to malaria. Trends Microbiol. 2002 Feb;10(2):55–58. doi: 10.1016/s0966-842x(01)02278-8. [DOI] [PubMed] [Google Scholar]
  28. CARRESCIA P. M., ARCOLEO G. Importanza della virulenza del ceppo di Plasmodium berghei nel determinare infezioni ad andamento rapido nei topi albini. Riv Malariol. 1957 Jun;36(1-3):65–72. [PubMed] [Google Scholar]
  29. Carlson J., Helmby H., Hill A. V., Brewster D., Greenwood B. M., Wahlgren M. Human cerebral malaria: association with erythrocyte rosetting and lack of anti-rosetting antibodies. Lancet. 1990 Dec 15;336(8729):1457–1460. doi: 10.1016/0140-6736(90)93174-n. [DOI] [PubMed] [Google Scholar]
  30. Chaiyaroj S. C., Coppel R. L., Magowan C., Brown G. V. A Plasmodium falciparum isolate with a chromosome 9 deletion expresses a trypsin-resistant cytoadherence molecule. Mol Biochem Parasitol. 1994 Sep;67(1):21–30. doi: 10.1016/0166-6851(94)90092-2. [DOI] [PubMed] [Google Scholar]
  31. Chao L., Hanley K. A., Burch C. L., Dahlberg C., Turner P. E. Kin selection and parasite evolution: higher and lower virulence with hard and soft selection. Q Rev Biol. 2000 Sep;75(3):261–275. doi: 10.1086/393499. [DOI] [PubMed] [Google Scholar]
  32. Chattopadhyay Rana, Sharma Amit, Srivastava Vinod K., Pati Sudhanshu S., Sharma S. K., Das Bhabani S., Chitnis Chetan E. Plasmodium falciparum infection elicits both variant-specific and cross-reactive antibodies against variant surface antigens. Infect Immun. 2003 Feb;71(2):597–604. doi: 10.1128/IAI.71.2.597-604.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Chen Q., Fernandez V., Sundström A., Schlichtherle M., Datta S., Hagblom P., Wahlgren M. Developmental selection of var gene expression in Plasmodium falciparum. Nature. 1998 Jul 23;394(6691):392–395. doi: 10.1038/28660. [DOI] [PubMed] [Google Scholar]
  34. Chotivanich K. T., Udomsangpetch R., Pipitaporn B., Angus B., Suputtamongkol Y., Pukrittayakamee S., White N. J. Rosetting characteristics of uninfected erythrocytes from healthy individuals and malaria patients. Ann Trop Med Parasitol. 1998 Jan;92(1):45–56. doi: 10.1080/00034989860166. [DOI] [PubMed] [Google Scholar]
  35. Chotivanich K., Udomsangpetch R., Simpson J. A., Newton P., Pukrittayakamee S., Looareesuwan S., White N. J. Parasite multiplication potential and the severity of Falciparum malaria. J Infect Dis. 2000 Mar;181(3):1206–1209. doi: 10.1086/315353. [DOI] [PubMed] [Google Scholar]
  36. Chotivanich Kesinee, Udomsangpetch Rachanee, Pattanapanyasat Kovit, Chierakul Wirongrong, Simpson Julie, Looareesuwan Sornchai, White Nicholas. Hemoglobin E: a balanced polymorphism protective against high parasitemias and thus severe P falciparum malaria. Blood. 2002 Aug 15;100(4):1172–1176. [PubMed] [Google Scholar]
  37. Clark I. A., Cowden W. B. Why is the pathology of falciparum worse than that of vivax malaria? Parasitol Today. 1999 Nov;15(11):458–461. doi: 10.1016/s0169-4758(99)01535-5. [DOI] [PubMed] [Google Scholar]
  38. Clark I. A., Rockett K. A. Nitric oxide and parasitic disease. Adv Parasitol. 1996;37:1–56. doi: 10.1016/s0065-308x(08)60218-3. [DOI] [PubMed] [Google Scholar]
  39. Clark I. A., Rockett K. A. The cytokine theory of human cerebral malaria. Parasitol Today. 1994 Oct;10(10):410–412. doi: 10.1016/0169-4758(94)90237-2. [DOI] [PubMed] [Google Scholar]
  40. Clark I. A., Schofield L. Pathogenesis of malaria. Parasitol Today. 2000 Oct;16(10):451–454. doi: 10.1016/s0169-4758(00)01757-9. [DOI] [PubMed] [Google Scholar]
  41. Clayton D. H., Tompkins D. M. Ectoparasite virulence is linked to mode of transmission. Proc Biol Sci. 1994 Jun 22;256(1347):211–217. doi: 10.1098/rspb.1994.0072. [DOI] [PubMed] [Google Scholar]
  42. Clough B., Atilola F. A., Black J., Pasvol G. Plasmodium falciparum: the importance of IgM in the rosetting of parasite-infected erythrocytes. Exp Parasitol. 1998 May;89(1):129–132. doi: 10.1006/expr.1998.4275. [DOI] [PubMed] [Google Scholar]
  43. Clough B., Atilola F. A., Pasvoi G. The role of rosetting in the multiplication of Plasmodium falciparum: rosette formation neither enhances nor targets parasite invasion into uninfected red cells. Br J Haematol. 1998 Jan;100(1):99–104. doi: 10.1046/j.1365-2141.1998.00534.x. [DOI] [PubMed] [Google Scholar]
  44. Collins W. E., Jeffery G. M. A retrospective examination of sporozoite- and trophozoite-induced infections with Plasmodium falciparum: development of parasitologic and clinical immunity during primary infection. Am J Trop Med Hyg. 1999 Jul;61(1 Suppl):4–19. doi: 10.4269/tropmed.1999.61-04. [DOI] [PubMed] [Google Scholar]
  45. Collins William E., Jeffery Geoffrey M. A retrospective examination of mosquito infection on humans infected with Plasmodium falciparum. Am J Trop Med Hyg. 2003 Mar;68(3):366–371. [PubMed] [Google Scholar]
  46. Collins William E., Jeffery Geoffrey M. A retrospective examination of sporozoite-induced and trophozoite-induced infections with Plasmodium ovale: development of parasitologic and clinical immunity during primary infection. Am J Trop Med Hyg. 2002 May;66(5):492–502. doi: 10.4269/ajtmh.2002.66.492. [DOI] [PubMed] [Google Scholar]
  47. Cooke B., Coppel R., Wahlgren M. Falciparum malaria: sticking up, standing out and out-standing. Parasitol Today. 2000 Oct;16(10):416–420. doi: 10.1016/s0169-4758(00)01753-1. [DOI] [PubMed] [Google Scholar]
  48. Cox J., Semoff S., Hommel M. Plasmodium chabaudi: a rodent malaria model for in-vivo and in-vitro cytoadherence of malaria parasites in the absence of knobs. Parasite Immunol. 1987 Sep;9(5):543–561. doi: 10.1111/j.1365-3024.1987.tb00529.x. [DOI] [PubMed] [Google Scholar]
  49. Crabb B. S., Cooke B. M., Reeder J. C., Waller R. F., Caruana S. R., Davern K. M., Wickham M. E., Brown G. V., Coppel R. L., Cowman A. F. Targeted gene disruption shows that knobs enable malaria-infected red cells to cytoadhere under physiological shear stress. Cell. 1997 Apr 18;89(2):287–296. doi: 10.1016/s0092-8674(00)80207-x. [DOI] [PubMed] [Google Scholar]
  50. David P. H., Handunnetti S. M., Leech J. H., Gamage P., Mendis K. N. Rosetting: a new cytoadherence property of malaria-infected erythrocytes. Am J Trop Med Hyg. 1988 Mar;38(2):289–297. doi: 10.4269/ajtmh.1988.38.289. [DOI] [PubMed] [Google Scholar]
  51. David P. H., Hommel M., Miller L. H., Udeinya I. J., Oligino L. D. Parasite sequestration in Plasmodium falciparum malaria: spleen and antibody modulation of cytoadherence of infected erythrocytes. Proc Natl Acad Sci U S A. 1983 Aug;80(16):5075–5079. doi: 10.1073/pnas.80.16.5075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. David P. H., Hudson D. E., Hadley T. J., Klotz F. W., Miller L. H. Immunization of monkeys with a 140 kilodalton merozoite surface protein of Plasmodium knowlesi malaria: appearance of alternate forms of this protein. J Immunol. 1985 Jun;134(6):4146–4152. [PubMed] [Google Scholar]
  53. Day J. F., Edman J. D. Malaria renders mice susceptible to mosquito feeding when gametocytes are most infective. J Parasitol. 1983 Feb;69(1):163–170. [PubMed] [Google Scholar]
  54. Day K. P., Hayward R. E., Smith D., Culvenor J. G. CD36-dependent adhesion and knob expression of the transmission stages of Plasmodium falciparum is stage specific. Mol Biochem Parasitol. 1998 Jun 1;93(2):167–177. doi: 10.1016/s0166-6851(98)00040-1. [DOI] [PubMed] [Google Scholar]
  55. Day K. P., Karamalis F., Thompson J., Barnes D. A., Peterson C., Brown H., Brown G. V., Kemp D. J. Genes necessary for expression of a virulence determinant and for transmission of Plasmodium falciparum are located on a 0.3-megabase region of chromosome 9. Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):8292–8296. doi: 10.1073/pnas.90.17.8292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Day K. P., Koella J. C., Nee S., Gupta S., Read A. F. Population genetics and dynamics of Plasmodium falciparum: an ecological view. Parasitology. 1992;104 (Suppl):S35–S52. doi: 10.1017/s0031182000075235. [DOI] [PubMed] [Google Scholar]
  57. Day K. P., Marsh K. Naturally acquired immunity to Plasmodium falciparum. Immunol Today. 1991 Mar;12(3):A68–A71. doi: 10.1016/s0167-5699(05)80020-9. [DOI] [PubMed] [Google Scholar]
  58. De Roode J. C., Read A. F., Chan B. H. K., Mackinnon M. J. Rodent malaria parasites suffer from the presence of conspecific clones in three-clone Plasmodium chabaudi infections. Parasitology. 2003 Nov;127(Pt 5):411–418. doi: 10.1017/s0031182003004001. [DOI] [PubMed] [Google Scholar]
  59. Dearsly A. L., Sinden R. E., Self I. A. Sexual development in malarial parasites: gametocyte production, fertility and infectivity to the mosquito vector. Parasitology. 1990 Jun;100(Pt 3):359–368. doi: 10.1017/s0031182000078628. [DOI] [PubMed] [Google Scholar]
  60. Desowitz R. S., Miller L. H., Buchanan R. D., Permpanich B. The sites of deep vascular schizogony in Plasmodium coatneyi malaria. Trans R Soc Trop Med Hyg. 1969;63(2):198–202. doi: 10.1016/0035-9203(69)90147-3. [DOI] [PubMed] [Google Scholar]
  61. Diebner H. H., Eichner M., Molineaux L., Collins W. E., Jeffery G. M., Dietz K. Modelling the transition of asexual blood stages of Plasmodium falciparum to gametocytes. J Theor Biol. 2000 Jan 21;202(2):113–127. doi: 10.1006/jtbi.1999.1041. [DOI] [PubMed] [Google Scholar]
  62. Dolan S. A., Miller L. H., Wellems T. E. Evidence for a switching mechanism in the invasion of erythrocytes by Plasmodium falciparum. J Clin Invest. 1990 Aug;86(2):618–624. doi: 10.1172/JCI114753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Dondorp A. M., Angus B. J., Hardeman M. R., Chotivanich K. T., Silamut K., Ruangveerayuth R., Kager P. A., White N. J., Vreeken J. Prognostic significance of reduced red blood cell deformability in severe falciparum malaria. Am J Trop Med Hyg. 1997 Nov;57(5):507–511. doi: 10.4269/ajtmh.1997.57.507. [DOI] [PubMed] [Google Scholar]
  64. Dondorp A. M., Planche T., de Bel E. E., Angus B. J., Chotivanich K. T., Silamut K., Romijn J. A., Ruangveerayuth R., Hoek F. J., Kager P. A. Nitric oxides in plasma, urine, and cerebrospinal fluid in patients with severe falciparum malaria. Am J Trop Med Hyg. 1998 Sep;59(3):497–502. doi: 10.4269/ajtmh.1998.59.497. [DOI] [PubMed] [Google Scholar]
  65. Ebert D. Virulence and local adaptation of a horizontally transmitted parasite. Science. 1994 Aug 19;265(5175):1084–1086. doi: 10.1126/science.265.5175.1084. [DOI] [PubMed] [Google Scholar]
  66. Ebert Dieter, Bull James J. Challenging the trade-off model for the evolution of virulence: is virulence management feasible? Trends Microbiol. 2003 Jan;11(1):15–20. doi: 10.1016/s0966-842x(02)00003-3. [DOI] [PubMed] [Google Scholar]
  67. Eichner M., Diebner H. H., Molineaux L., Collins W. E., Jeffery G. M., Dietz K. Genesis, sequestration and survival of Plasmodium falciparum gametocytes: parameter estimates from fitting a model to malariatherapy data. Trans R Soc Trop Med Hyg. 2001 Sep-Oct;95(5):497–501. doi: 10.1016/s0035-9203(01)90016-1. [DOI] [PubMed] [Google Scholar]
  68. Elena S. F. Evolutionary history conditions the timing of transmission in vesicular stomatitis virus. Infect Genet Evol. 2001 Dec;1(2):151–159. doi: 10.1016/s1567-1348(01)00022-3. [DOI] [PubMed] [Google Scholar]
  69. Elena S. F., Sanjuán R., Bordería A. V., Turner P. E. Transmission bottlenecks and the evolution of fitness in rapidly evolving RNA viruses. Infect Genet Evol. 2001 Jul;1(1):41–48. doi: 10.1016/s1567-1348(01)00006-5. [DOI] [PubMed] [Google Scholar]
  70. FENNER F., DAY M. F., WOODROOFE G. M. Epidemiological consequences of the mechanical transmission of myxomatosis by mosquitoes. J Hyg (Lond) 1956 Jun;54(2):284–303. doi: 10.1017/s0022172400044521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Ferguson H. M., Mackinnon M. J., Chan B. H., Read A. F. Mosquito mortality and the evolution of malaria virulence. Evolution. 2003 Dec;57(12):2792–2804. doi: 10.1111/j.0014-3820.2003.tb01521.x. [DOI] [PubMed] [Google Scholar]
  72. Ferguson H. M., Rivero A., Read A. F. The influence of malaria parasite genetic diversity and anaemia on mosquito feeding and fecundity. Parasitology. 2003 Jul;127(Pt 1):9–19. doi: 10.1017/s0031182003003287. [DOI] [PubMed] [Google Scholar]
  73. Ferguson Heather M., Read Andrew F. Why is the effect of malaria parasites on mosquito survival still unresolved? Trends Parasitol. 2002 Jun;18(6):256–261. doi: 10.1016/s1471-4922(02)02281-x. [DOI] [PubMed] [Google Scholar]
  74. Fernandez-Reyes D., Craig A. G., Kyes S. A., Peshu N., Snow R. W., Berendt A. R., Marsh K., Newbold C. I. A high frequency African coding polymorphism in the N-terminal domain of ICAM-1 predisposing to cerebral malaria in Kenya. Hum Mol Genet. 1997 Aug;6(8):1357–1360. doi: 10.1093/hmg/6.8.1357. [DOI] [PubMed] [Google Scholar]
  75. Fernandez V., Hommel M., Chen Q., Hagblom P., Wahlgren M. Small, clonally variant antigens expressed on the surface of the Plasmodium falciparum-infected erythrocyte are encoded by the rif gene family and are the target of human immune responses. J Exp Med. 1999 Nov 15;190(10):1393–1404. doi: 10.1084/jem.190.10.1393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Forsyth K. P., Philip G., Smith T., Kum E., Southwell B., Brown G. V. Diversity of antigens expressed on the surface of erythrocytes infected with mature Plasmodium falciparum parasites in Papua New Guinea. Am J Trop Med Hyg. 1989 Sep;41(3):259–265. [PubMed] [Google Scholar]
  77. Frank S. A. Models of parasite virulence. Q Rev Biol. 1996 Mar;71(1):37–78. doi: 10.1086/419267. [DOI] [PubMed] [Google Scholar]
  78. Freeman R. R., Trejdosiewicz A. J., Cross G. A. Protective monoclonal antibodies recognising stage-specific merozoite antigens of a rodent malaria parasite. Nature. 1980 Mar 27;284(5754):366–368. doi: 10.1038/284366a0. [DOI] [PubMed] [Google Scholar]
  79. Fried M., Nosten F., Brockman A., Brabin B. J., Duffy P. E. Maternal antibodies block malaria. Nature. 1998 Oct 29;395(6705):851–852. doi: 10.1038/27570. [DOI] [PubMed] [Google Scholar]
  80. GREENBERG J., KENDRICK L. P. Some characteristics of Plasmodium berghei passed within inbred strains of mice. J Parasitol. 1957 Aug;43(4):420–427. [PubMed] [Google Scholar]
  81. Galli L., Brambilla E. Progressivo aumento della virulenza di un ceppo di Plasmodium berghei. Riv Parassitol. 1967 Sep;28(3):173–176. [PubMed] [Google Scholar]
  82. Gandon S., Mackinnon M. J., Nee S., Read A. F. Imperfect vaccines and the evolution of pathogen virulence. Nature. 2001 Dec 13;414(6865):751–756. doi: 10.1038/414751a. [DOI] [PubMed] [Google Scholar]
  83. Gardner J. P., Pinches R. A., Roberts D. J., Newbold C. I. Variant antigens and endothelial receptor adhesion in Plasmodium falciparum. Proc Natl Acad Sci U S A. 1996 Apr 16;93(8):3503–3508. doi: 10.1073/pnas.93.8.3503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Genton Blaise, Betuela Inoni, Felger Ingrid, Al-Yaman Fadwa, Anders Robin F., Saul Allan, Rare Lawrence, Baisor Moses, Lorry Kerry, Brown Graham V. A recombinant blood-stage malaria vaccine reduces Plasmodium falciparum density and exerts selective pressure on parasite populations in a phase 1-2b trial in Papua New Guinea. J Infect Dis. 2002 Feb 14;185(6):820–827. doi: 10.1086/339342. [DOI] [PubMed] [Google Scholar]
  85. Giha H. A., Staalsoe T., Dodoo D., Elhassan I. M., Roper C., Satti G. M., Arnot D. E., Theander T. G., Hviid L. Nine-year longitudinal study of antibodies to variant antigens on the surface of Plasmodium falciparum-infected erythrocytes. Infect Immun. 1999 Aug;67(8):4092–4098. doi: 10.1128/iai.67.8.4092-4098.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Giha H. A., Staalsoe T., Dodoo D., Roper C., Satti G. M., Arnot D. E., Hviid L., Theander T. G. Antibodies to variable Plasmodium falciparum-infected erythrocyte surface antigens are associated with protection from novel malaria infections. Immunol Lett. 2000 Feb 1;71(2):117–126. doi: 10.1016/s0165-2478(99)00173-x. [DOI] [PubMed] [Google Scholar]
  87. Giha H. A., Theander T. G., Staalsø T., Roper C., Elhassan I. M., Babiker H., Satti G. M., Arnot D. E., Hviid L. Seasonal variation in agglutination of Plasmodium falciparum-infected erythrocytes. Am J Trop Med Hyg. 1998 Apr;58(4):399–405. doi: 10.4269/ajtmh.1998.58.399. [DOI] [PubMed] [Google Scholar]
  88. Gilks C. F., Walliker D., Newbold C. I. Relationships between sequestration, antigenic variation and chronic parasitism in Plasmodium chabaudi chabaudi--a rodent malaria model. Parasite Immunol. 1990 Jan;12(1):45–64. doi: 10.1111/j.1365-3024.1990.tb00935.x. [DOI] [PubMed] [Google Scholar]
  89. Gravenor M. B., McLean A. R., Kwiatkowski D. The regulation of malaria parasitaemia: parameter estimates for a population model. Parasitology. 1995 Feb;110(Pt 2):115–122. doi: 10.1017/s0031182000063861. [DOI] [PubMed] [Google Scholar]
  90. Graves P. M., Burkot T. R., Carter R., Cattani J. A., Lagog M., Parker J., Brabin B. J., Gibson F. D., Bradley D. J., Alpers M. P. Measurement of malarial infectivity of human populations to mosquitoes in the Madang area, Papua, New Guinea. Parasitology. 1988 Apr;96(Pt 2):251–263. doi: 10.1017/s003118200005825x. [DOI] [PubMed] [Google Scholar]
  91. Graves P. M., Carter R., McNeill K. M. Gametocyte production in cloned lines of Plasmodium falciparum. Am J Trop Med Hyg. 1984 Nov;33(6):1045–1050. doi: 10.4269/ajtmh.1984.33.1045. [DOI] [PubMed] [Google Scholar]
  92. Greenwood B. M., Bradley A. K., Greenwood A. M., Byass P., Jammeh K., Marsh K., Tulloch S., Oldfield F. S., Hayes R. Mortality and morbidity from malaria among children in a rural area of The Gambia, West Africa. Trans R Soc Trop Med Hyg. 1987;81(3):478–486. doi: 10.1016/0035-9203(87)90170-2. [DOI] [PubMed] [Google Scholar]
  93. Greenwood B., Marsh K., Snow R. Why do some African children develop severe malaria? Parasitol Today. 1991 Oct;7(10):277–281. doi: 10.1016/0169-4758(91)90096-7. [DOI] [PubMed] [Google Scholar]
  94. Gupta S., Hill A. V., Kwiatkowski D., Greenwood A. M., Greenwood B. M., Day K. P. Parasite virulence and disease patterns in Plasmodium falciparum malaria. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):3715–3719. doi: 10.1073/pnas.91.9.3715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  95. Hadley T. J., Klotz F. W., Pasvol G., Haynes J. D., McGinniss M. H., Okubo Y., Miller L. H. Falciparum malaria parasites invade erythrocytes that lack glycophorin A and B (MkMk). Strain differences indicate receptor heterogeneity and two pathways for invasion. J Clin Invest. 1987 Oct;80(4):1190–1193. doi: 10.1172/JCI113178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Handunnetti S. M., David P. H., Perera K. L., Mendis K. N. Uninfected erythrocytes form "rosettes" around Plasmodium falciparum infected erythrocytes. Am J Trop Med Hyg. 1989 Feb;40(2):115–118. doi: 10.4269/ajtmh.1989.40.115. [DOI] [PubMed] [Google Scholar]
  97. Handunnetti S. M., Hasler T. H., Howard R. J. Plasmodium falciparum-infected erythrocytes do not adhere well to C32 melanoma cells or CD36 unless rosettes with uninfected erythrocytes are first disrupted. Infect Immun. 1992 Mar;60(3):928–932. doi: 10.1128/iai.60.3.928-932.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  98. Handunnetti S. M., Mendis K. N., David P. H. Antigenic variation of cloned Plasmodium fragile in its natural host Macaca sinica. Sequential appearance of successive variant antigenic types. J Exp Med. 1987 May 1;165(5):1269–1283. doi: 10.1084/jem.165.5.1269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. Hartley E. G. Increased virulence of Plasmodium cynomolgi bastianellii in the rhesus monkey. Trans R Soc Trop Med Hyg. 1969;63(3):411–412. doi: 10.1016/0035-9203(69)90023-6. [DOI] [PubMed] [Google Scholar]
  100. Hay S. I., Rogers D. J., Toomer J. F., Snow R. W. Annual Plasmodium falciparum entomological inoculation rates (EIR) across Africa: literature survey, Internet access and review. Trans R Soc Trop Med Hyg. 2000 Mar-Apr;94(2):113–127. doi: 10.1016/s0035-9203(00)90246-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  101. Hayward R. E., Tiwari B., Piper K. P., Baruch D. I., Day K. P. Virulence and transmission success of the malarial parasite Plasmodium falciparum. Proc Natl Acad Sci U S A. 1999 Apr 13;96(8):4563–4568. doi: 10.1073/pnas.96.8.4563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  102. Helmby H., Cavelier L., Pettersson U., Wahlgren M. Rosetting Plasmodium falciparum-infected erythrocytes express unique strain-specific antigens on their surface. Infect Immun. 1993 Jan;61(1):284–288. doi: 10.1128/iai.61.1.284-288.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  103. Herre E. A. Population structure and the evolution of virulence in nematode parasites of fig wasps. Science. 1993 Mar 5;259(5100):1442–1445. doi: 10.1126/science.259.5100.1442. [DOI] [PubMed] [Google Scholar]
  104. Ho M., Davis T. M., Silamut K., Bunnag D., White N. J. Rosette formation of Plasmodium falciparum-infected erythrocytes from patients with acute malaria. Infect Immun. 1991 Jun;59(6):2135–2139. doi: 10.1128/iai.59.6.2135-2139.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  105. Ho M., White N. J. Molecular mechanisms of cytoadherence in malaria. Am J Physiol. 1999 Jun;276(6 Pt 1):C1231–C1242. doi: 10.1152/ajpcell.1999.276.6.C1231. [DOI] [PubMed] [Google Scholar]
  106. Holder A. A., Freeman R. R. Immunization against blood-stage rodent malaria using purified parasite antigens. Nature. 1981 Nov 26;294(5839):361–364. doi: 10.1038/294361a0. [DOI] [PubMed] [Google Scholar]
  107. Holmes Charles B., Losina Elena, Walensky Rochelle P., Yazdanpanah Yazdan, Freedberg Kenneth A. Review of human immunodeficiency virus type 1-related opportunistic infections in sub-Saharan Africa. Clin Infect Dis. 2003 Feb 17;36(5):652–662. doi: 10.1086/367655. [DOI] [PubMed] [Google Scholar]
  108. Hommel M., David P. H., Oligino L. D. Surface alterations of erythrocytes in Plasmodium falciparum malaria. Antigenic variation, antigenic diversity, and the role of the spleen. J Exp Med. 1983 Apr 1;157(4):1137–1148. doi: 10.1084/jem.157.4.1137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  109. Howard R. J., Barnwell J. W. Immunochemical analysis of surface membrane antigens on erythrocytes infected with non-cloned SICA[+] or cloned SICA[-] Plasmodium knowlesi. Parasitology. 1985 Oct;91(Pt 2):245–261. doi: 10.1017/s0031182000057346. [DOI] [PubMed] [Google Scholar]
  110. Hutagalung R., Wilairatana P., Looareesuwan S., Brittenham G. M., Aikawa M., Gordeuk V. R. Influence of hemoglobin E trait on the severity of Falciparum malaria. J Infect Dis. 1999 Jan;179(1):283–286. doi: 10.1086/314561. [DOI] [PubMed] [Google Scholar]
  111. Iqbal J., Perlmann P., Berzins K. Serological diversity of antigens expressed on the surface of erythrocytes infected with Plasmodium falciparum. Trans R Soc Trop Med Hyg. 1993 Sep-Oct;87(5):583–588. doi: 10.1016/0035-9203(93)90097-a. [DOI] [PubMed] [Google Scholar]
  112. JEFFERY G. M., EYLES D. E. Infectivity to mosquitoes of Plasmodium falciparum as related to gametocyte density and duration of infection. Am J Trop Med Hyg. 1955 Sep;4(5):781–789. doi: 10.4269/ajtmh.1955.4.781. [DOI] [PubMed] [Google Scholar]
  113. JEFFERY G. M., EYLES D. E. The duration in the human host of infections with a Panama strain of Plasmodium falciparum. Am J Trop Med Hyg. 1954 Mar;3(2):219–224. doi: 10.4269/ajtmh.1954.3.219. [DOI] [PubMed] [Google Scholar]
  114. Janssen C. S., Barrett M. P., Lawson D., Quail M. A., Harris D., Bowman S., Phillips R. S., Turner C. M. Gene discovery in Plasmodium chabaudi by genome survey sequencing. Mol Biochem Parasitol. 2001 Apr 6;113(2):251–260. doi: 10.1016/s0166-6851(01)00224-9. [DOI] [PubMed] [Google Scholar]
  115. Janssen Christoph S., Barrett Michael P., Turner C. Michael R., Phillips R. Stephen. A large gene family for putative variant antigens shared by human and rodent malaria parasites. Proc Biol Sci. 2002 Feb 22;269(1489):431–436. doi: 10.1098/rspb.2001.1903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  116. Jarra W., Brown K. N. Invasion of mature and immature erythrocytes of CBA/Ca mice by a cloned line of Plasmodium chabaudi chabaudi. Parasitology. 1989 Oct;99(Pt 2):157–163. doi: 10.1017/s0031182000058583. [DOI] [PubMed] [Google Scholar]
  117. Jarra W., Brown K. N. Protective immunity to malaria: studies with cloned lines of Plasmodium chabaudi and P. berghei in CBA/Ca mice. I. The effectiveness and inter- and intra-species specificity of immunity induced by infection. Parasite Immunol. 1985 Nov;7(6):595–606. doi: 10.1111/j.1365-3024.1985.tb00103.x. [DOI] [PubMed] [Google Scholar]
  118. Jeffery G. M. Epidemiological significance of repeated infections with homologous and heterologous strains and species of Plasmodium. Bull World Health Organ. 1966;35(6):873–882. [PMC free article] [PubMed] [Google Scholar]
  119. Kaul D. K., Nagel R. L., Llena J. F., Shear H. L. Cerebral malaria in mice: demonstration of cytoadherence of infected red blood cells and microrheologic correlates. Am J Trop Med Hyg. 1994 Apr;50(4):512–521. doi: 10.4269/ajtmh.1994.50.512. [DOI] [PubMed] [Google Scholar]
  120. Kaul D. K., Roth E. F., Jr, Nagel R. L., Howard R. J., Handunnetti S. M. Rosetting of Plasmodium falciparum-infected red blood cells with uninfected red blood cells enhances microvascular obstruction under flow conditions. Blood. 1991 Aug 1;78(3):812–819. [PubMed] [Google Scholar]
  121. Kun J. F., Schmidt-Ott R. J., Lehman L. G., Lell B., Luckner D., Greve B., Matousek P., Kremsner P. G. Merozoite surface antigen 1 and 2 genotypes and rosetting of Plasmodium falciparum in severe and mild malaria in Lambaréné, Gabon. Trans R Soc Trop Med Hyg. 1998 Jan-Feb;92(1):110–114. doi: 10.1016/s0035-9203(98)90979-8. [DOI] [PubMed] [Google Scholar]
  122. Kyes S. A., Rowe J. A., Kriek N., Newbold C. I. Rifins: a second family of clonally variant proteins expressed on the surface of red cells infected with Plasmodium falciparum. Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):9333–9338. doi: 10.1073/pnas.96.16.9333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  123. Kyes S., Horrocks P., Newbold C. Antigenic variation at the infected red cell surface in malaria. Annu Rev Microbiol. 2001;55:673–707. doi: 10.1146/annurev.micro.55.1.673. [DOI] [PubMed] [Google Scholar]
  124. LANDAU I. DESCRIPTION DE PLASMODIUM CHABAUDI N. SP., PARASITE DE RONGEURS AFRICAINS. C R Hebd Seances Acad Sci. 1965 Mar 29;260:3758–3761. [PubMed] [Google Scholar]
  125. Landau I., Chabaud A. G. Infection naturelle par deux Plasmodium du rongeur Thamnomys rutilans en République Centre Africaine. C R Acad Sci Hebd Seances Acad Sci D. 1965 Jul 5;261(1):230–232. [PubMed] [Google Scholar]
  126. Landau I., Chabaud A. G., Mora-Silvera E., Coquelin F., Boulard Y., Rénia L., Snounou G. Survival of rodent malaria merozoites in the lymphatic network: potential role in chronicity of the infection. Parasite. 1999 Dec;6(4):311–322. doi: 10.1051/parasite/1999064311. [DOI] [PubMed] [Google Scholar]
  127. Landau I., Chabaud A. G. Schizogonie hépatique secondaire dans le paludisme spontané des rongeurs. C R Acad Sci Hebd Seances Acad Sci D. 1968 Apr 22;266(17):1730–1733. [PubMed] [Google Scholar]
  128. Landau I. Comments on sporozoite-induced infections in rodent hosts. Mil Med. 1966 Sep;131(9 Suppl):919–922. [PubMed] [Google Scholar]
  129. Landau I., Killick-Kendrick R. Rodent plasmodia of the République Centrafricaine: the sporogony and tissue stages of Plasmodium chabaudi and P. berghei yoelii. Trans R Soc Trop Med Hyg. 1966;60(5):633–649. doi: 10.1016/0035-9203(66)90010-1. [DOI] [PubMed] [Google Scholar]
  130. Langreth S. G., Peterson E. Pathogenicity, stability, and immunogenicity of a knobless clone of Plasmodium falciparum in Colombian owl monkeys. Infect Immun. 1985 Mar;47(3):760–766. doi: 10.1128/iai.47.3.760-766.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  131. Leech J. H., Barnwell J. W., Aikawa M., Miller L. H., Howard R. J. Plasmodium falciparum malaria: association of knobs on the surface of infected erythrocytes with a histidine-rich protein and the erythrocyte skeleton. J Cell Biol. 1984 Apr;98(4):1256–1264. doi: 10.1083/jcb.98.4.1256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  132. Levin B. R., Bull J. J. Short-sighted evolution and the virulence of pathogenic microorganisms. Trends Microbiol. 1994 Mar;2(3):76–81. doi: 10.1016/0966-842x(94)90538-x. [DOI] [PubMed] [Google Scholar]
  133. Levin B. R., Svanborg Edén C. Selection and evolution of virulence in bacteria: an ecumenical excursion and modest suggestion. Parasitology. 1990;100 (Suppl):S103–S115. doi: 10.1017/s0031182000073054. [DOI] [PubMed] [Google Scholar]
  134. Lipsitch M., Moxon E. R. Virulence and transmissibility of pathogens: what is the relationship? Trends Microbiol. 1997 Jan;5(1):31–37. doi: 10.1016/S0966-842X(97)81772-6. [DOI] [PubMed] [Google Scholar]
  135. Luzzatto L., Sodeinde O., Martini G. Genetic variation in the host and adaptive phenomena in Plasmodium falciparum infection. Ciba Found Symp. 1983;94:159–173. doi: 10.1002/9780470715444.ch10. [DOI] [PubMed] [Google Scholar]
  136. Lyon J. A., Haynes J. D., Diggs C. L., Chulay J. D., Pratt-Rossiter J. M. Plasmodium falciparum antigens synthesized by schizonts and stabilized at the merozoite surface by antibodies when schizonts mature in the presence of growth inhibitory immune serum. J Immunol. 1986 Mar 15;136(6):2252–2258. [PubMed] [Google Scholar]
  137. MUIRHEAD-THOMSON R. C. Factors determining the true reservoir of infection of Plasmodium falciparum and Wuchereria bancrofti in a West African village. Trans R Soc Trop Med Hyg. 1954 May;48(3):208–225. doi: 10.1016/0035-9203(54)90067-x. [DOI] [PubMed] [Google Scholar]
  138. MUIRHEAD-THOMSON R. C., MERCIER E. C. Factors in malaria transmission by Anopheles albimanus in Jamaica. Part I. Ann Trop Med Parasitol. 1952 Sep;46(2):103–116. doi: 10.1080/00034983.1952.11685512. [DOI] [PubMed] [Google Scholar]
  139. MacPherson G. G., Warrell M. J., White N. J., Looareesuwan S., Warrell D. A. Human cerebral malaria. A quantitative ultrastructural analysis of parasitized erythrocyte sequestration. Am J Pathol. 1985 Jun;119(3):385–401. [PMC free article] [PubMed] [Google Scholar]
  140. Mackinnon M. J., Gaffney D. J., Read A. F. Virulence in rodent malaria: host genotype by parasite genotype interactions. Infect Genet Evol. 2002 Jul;1(4):287–296. doi: 10.1016/s1567-1348(02)00039-4. [DOI] [PubMed] [Google Scholar]
  141. Mackinnon M. J., Read A. F. Selection for high and low virulence in the malaria parasite Plasmodium chabaudi. Proc Biol Sci. 1999 Apr 7;266(1420):741–748. doi: 10.1098/rspb.1999.0699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  142. Mackinnon M. J., Read A. F. The effects of host immunity on virulence-transmissibility relationships in the rodent malaria parasite Plasmodium chabaudi. Parasitology. 2003 Feb;126(Pt 2):103–112. doi: 10.1017/s003118200200272x. [DOI] [PubMed] [Google Scholar]
  143. Mackinnon Margaret J., Walker Polly R., Rowe J. Alexandra. Plasmodium chabaudi: rosetting in a rodent malaria model. Exp Parasitol. 2002 Jun-Jul;101(2-3):121–128. doi: 10.1016/s0014-4894(02)00103-0. [DOI] [PubMed] [Google Scholar]
  144. Marsh K., Howard R. J. Antigens induced on erythrocytes by P. falciparum: expression of diverse and conserved determinants. Science. 1986 Jan 10;231(4734):150–153. doi: 10.1126/science.2417315. [DOI] [PubMed] [Google Scholar]
  145. Marsh K., Otoo L., Hayes R. J., Carson D. C., Greenwood B. M. Antibodies to blood stage antigens of Plasmodium falciparum in rural Gambians and their relation to protection against infection. Trans R Soc Trop Med Hyg. 1989 May-Jun;83(3):293–303. doi: 10.1016/0035-9203(89)90478-1. [DOI] [PubMed] [Google Scholar]
  146. Marsh K., Snow R. W. Host-parasite interaction and morbidity in malaria endemic areas. Philos Trans R Soc Lond B Biol Sci. 1997 Sep 29;352(1359):1385–1394. doi: 10.1098/rstb.1997.0124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  147. McKenzie F. E., Jeffery G. M., Collins W. E. Plasmodium malariae blood-stage dynamics. J Parasitol. 2001 Jun;87(3):626–637. doi: 10.1645/0022-3395(2001)087[0626:PMBSD]2.0.CO;2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  148. McKenzie F. Ellis, Jeffery Geoffrey M., Collins William E. Plasmodium vivax blood-stage dynamics. J Parasitol. 2002 Jun;88(3):521–535. doi: 10.1645/0022-3395(2002)088[0521:PVBSD]2.0.CO;2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  149. McLean S. A., MacDougall L. M., Phillips R. S. Early appearance of variant parasites in Plasmodium chabaudi infections. Parasite Immunol. 1990 Mar;12(2):97–103. doi: 10.1111/j.1365-3024.1990.tb00939.x. [DOI] [PubMed] [Google Scholar]
  150. McLean S. A., Pearson C. D., Phillips R. S. Plasmodium chabaudi: antigenic variation during recrudescent parasitaemias in mice. Exp Parasitol. 1982 Dec;54(3):296–302. doi: 10.1016/0014-4894(82)90038-8. [DOI] [PubMed] [Google Scholar]
  151. Mendis K. N., Ihalamulla R. I., David P. H. Diversity of Plasmodium vivax-induced antigens on the surface of infected human erythrocytes. Am J Trop Med Hyg. 1988 Jan;38(1):42–46. doi: 10.4269/ajtmh.1988.38.42. [DOI] [PubMed] [Google Scholar]
  152. Mendis K., Sina B. J., Marchesini P., Carter R. The neglected burden of Plasmodium vivax malaria. Am J Trop Med Hyg. 2001 Jan-Feb;64(1-2):97–106. doi: 10.4269/ajtmh.2001.64.97. [DOI] [PubMed] [Google Scholar]
  153. Messenger S. L., Molineux I. J., Bull J. J. Virulence evolution in a virus obeys a trade-off. Proc Biol Sci. 1999 Feb 22;266(1417):397–404. doi: 10.1098/rspb.1999.0651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  154. Miller L. H., Carter R. A review. Innate resistance in malaria. Exp Parasitol. 1976 Aug;40(1):132–146. doi: 10.1016/0014-4894(76)90075-8. [DOI] [PubMed] [Google Scholar]
  155. Miller L. H. Distribution of mature trophozoites and schizonts of Plasmodium falciparum in the organs of Aotus trivirgatus, the night monkey. Am J Trop Med Hyg. 1969 Nov;18(6):860–865. doi: 10.4269/ajtmh.1969.18.860. [DOI] [PubMed] [Google Scholar]
  156. Miller Louis H., Baruch Dror I., Marsh Kevin, Doumbo Ogobara K. The pathogenic basis of malaria. Nature. 2002 Feb 7;415(6872):673–679. doi: 10.1038/415673a. [DOI] [PubMed] [Google Scholar]
  157. Mitchell G. H., Hadley T. J., McGinniss M. H., Klotz F. W., Miller L. H. Invasion of erythrocytes by Plasmodium falciparum malaria parasites: evidence for receptor heterogeneity and two receptors. Blood. 1986 May;67(5):1519–1521. [PubMed] [Google Scholar]
  158. Molineaux L., Diebner H. H., Eichner M., Collins W. E., Jeffery G. M., Dietz K. Plasmodium falciparum parasitaemia described by a new mathematical model. Parasitology. 2001 Apr;122(Pt 4):379–391. doi: 10.1017/s0031182001007533. [DOI] [PubMed] [Google Scholar]
  159. Mota M. M., Brown K. N., Holder A. A., Jarra W. Acute Plasmodium chabaudi chabaudi malaria infection induces antibodies which bind to the surfaces of parasitized erythrocytes and promote their phagocytosis by macrophages in vitro. Infect Immun. 1998 Sep;66(9):4080–4086. doi: 10.1128/iai.66.9.4080-4086.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  160. Mota M. M., Jarra W., Hirst E., Patnaik P. K., Holder A. A. Plasmodium chabaudi-infected erythrocytes adhere to CD36 and bind to microvascular endothelial cells in an organ-specific way. Infect Immun. 2000 Jul;68(7):4135–4144. doi: 10.1128/iai.68.7.4135-4144.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  161. Nash G. B., Cooke B. M., Carlson J., Wahlgren M. Rheological properties of rosettes formed by red blood cells parasitized by Plasmodium falciparum. Br J Haematol. 1992 Dec;82(4):757–763. doi: 10.1111/j.1365-2141.1992.tb06955.x. [DOI] [PubMed] [Google Scholar]
  162. Newbold C. I., Pinches R., Roberts D. J., Marsh K. Plasmodium falciparum: the human agglutinating antibody response to the infected red cell surface is predominantly variant specific. Exp Parasitol. 1992 Nov;75(3):281–292. doi: 10.1016/0014-4894(92)90213-t. [DOI] [PubMed] [Google Scholar]
  163. Newbold C. I., Schryer M., Boyle D. B., McBride J. S., McLean A., Wilson R. J., Brown K. N. A possible molecular basis for strain specific immunity to malaria. Mol Biochem Parasitol. 1984 Apr;11:337–347. doi: 10.1016/0166-6851(84)90077-x. [DOI] [PubMed] [Google Scholar]
  164. Newbold C., Craig A., Kyes S., Rowe A., Fernandez-Reyes D., Fagan T. Cytoadherence, pathogenesis and the infected red cell surface in Plasmodium falciparum. Int J Parasitol. 1999 Jun;29(6):927–937. doi: 10.1016/s0020-7519(99)00049-1. [DOI] [PubMed] [Google Scholar]
  165. Newbold C., Warn P., Black G., Berendt A., Craig A., Snow B., Msobo M., Peshu N., Marsh K. Receptor-specific adhesion and clinical disease in Plasmodium falciparum. Am J Trop Med Hyg. 1997 Oct;57(4):389–398. doi: 10.4269/ajtmh.1997.57.389. [DOI] [PubMed] [Google Scholar]
  166. Nielsen Morten A., Staalsoe Trine, Kurtzhals Jørgen A. L., Goka Bamenla Q., Dodoo Daniel, Alifrangis Michael, Theander Thor G., Akanmori Bartholomew D., Hviid Lars. Plasmodium falciparum variant surface antigen expression varies between isolates causing severe and nonsevere malaria and is modified by acquired immunity. J Immunol. 2002 Apr 1;168(7):3444–3450. doi: 10.4049/jimmunol.168.7.3444. [DOI] [PubMed] [Google Scholar]
  167. Ockenhouse C. F., Ho M., Tandon N. N., Van Seventer G. A., Shaw S., White N. J., Jamieson G. A., Chulay J. D., Webster H. K. Molecular basis of sequestration in severe and uncomplicated Plasmodium falciparum malaria: differential adhesion of infected erythrocytes to CD36 and ICAM-1. J Infect Dis. 1991 Jul;164(1):163–169. doi: 10.1093/infdis/164.1.163. [DOI] [PubMed] [Google Scholar]
  168. Ofori Michael F., Dodoo Daniel, Staalsoe Trine, Kurtzhals Jørgen A. L., Koram Kwadwo, Theander Thor G., Akanmori Bartholomew D., Hviid Lars. Malaria-induced acquisition of antibodies to Plasmodium falciparum variant surface antigens. Infect Immun. 2002 Jun;70(6):2982–2988. doi: 10.1128/IAI.70.6.2982-2988.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  169. Ogun S. A., Holder A. A. A high molecular mass Plasmodium yoelii rhoptry protein binds to erythrocytes. Mol Biochem Parasitol. 1996 Feb-Mar;76(1-2):321–324. doi: 10.1016/0166-6851(95)02540-5. [DOI] [PubMed] [Google Scholar]
  170. Okoyeh J. N., Pillai C. R., Chitnis C. E. Plasmodium falciparum field isolates commonly use erythrocyte invasion pathways that are independent of sialic acid residues of glycophorin A. Infect Immun. 1999 Nov;67(11):5784–5791. doi: 10.1128/iai.67.11.5784-5791.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  171. Pain A., Ferguson D. J., Kai O., Urban B. C., Lowe B., Marsh K., Roberts D. J. Platelet-mediated clumping of Plasmodium falciparum-infected erythrocytes is a common adhesive phenotype and is associated with severe malaria. Proc Natl Acad Sci U S A. 2001 Feb 13;98(4):1805–1810. doi: 10.1073/pnas.98.4.1805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  172. Pasvol G., Weatherall D. J., Wilson R. J. The increased susceptibility of young red cells to invasion by the malarial parasite Plasmodium falciparum. Br J Haematol. 1980 Jun;45(2):285–295. doi: 10.1111/j.1365-2141.1980.tb07148.x. [DOI] [PubMed] [Google Scholar]
  173. Perkins M. E., Holt E. H. Erythrocyte receptor recognition varies in Plasmodium falciparum isolates. Mol Biochem Parasitol. 1988 Jan 1;27(1):23–34. doi: 10.1016/0166-6851(88)90021-7. [DOI] [PubMed] [Google Scholar]
  174. Phillips R. S., Brannan L. R., Balmer P., Neuville P. Antigenic variation during malaria infection--the contribution from the murine parasite Plasmodium chabaudi. Parasite Immunol. 1997 Sep;19(9):427–434. doi: 10.1046/j.1365-3024.1997.d01-239.x. [DOI] [PubMed] [Google Scholar]
  175. Phillips R. S. Current status of malaria and potential for control. Clin Microbiol Rev. 2001 Jan;14(1):208–226. doi: 10.1128/CMR.14.1.208-226.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  176. Pongponratn E., Riganti M., Punpoowong B., Aikawa M. Microvascular sequestration of parasitized erythrocytes in human falciparum malaria: a pathological study. Am J Trop Med Hyg. 1991 Feb;44(2):168–175. doi: 10.4269/ajtmh.1991.44.168. [DOI] [PubMed] [Google Scholar]
  177. Pouvelle B., Buffet P. A., Lépolard C., Scherf A., Gysin J. Cytoadhesion of Plasmodium falciparum ring-stage-infected erythrocytes. Nat Med. 2000 Nov;6(11):1264–1268. doi: 10.1038/81374. [DOI] [PubMed] [Google Scholar]
  178. Preiser P. R., Jarra W., Capiod T., Snounou G. A rhoptry-protein-associated mechanism of clonal phenotypic variation in rodent malaria. Nature. 1999 Apr 15;398(6728):618–622. doi: 10.1038/19309. [DOI] [PubMed] [Google Scholar]
  179. Preiser P. R., Jarra W. Plasmodium yoelii: differences in the transcription of the 235-kDa rhoptry protein multigene family in lethal and nonlethal lines. Exp Parasitol. 1998 May;89(1):50–57. doi: 10.1006/expr.1998.4259. [DOI] [PubMed] [Google Scholar]
  180. Ramasamy R., Yasawardena S., Kanagaratnam R., Buratti E., Baralle F. E., Ramasamy M. S. Antibodies to a merozoite surface protein promote multiple invasion of red blood cells by malaria parasites. Parasite Immunol. 1999 Aug;21(8):397–407. doi: 10.1046/j.1365-3024.1999.00239.x. [DOI] [PubMed] [Google Scholar]
  181. Raventos-Suarez C., Kaul D. K., Macaluso F., Nagel R. L. Membrane knobs are required for the microcirculatory obstruction induced by Plasmodium falciparum-infected erythrocytes. Proc Natl Acad Sci U S A. 1985 Jun;82(11):3829–3833. doi: 10.1073/pnas.82.11.3829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  182. Read A. F., Taylor L. H. The ecology of genetically diverse infections. Science. 2001 May 11;292(5519):1099–1102. doi: 10.1126/science.1059410. [DOI] [PubMed] [Google Scholar]
  183. Reeder J. C., Rogerson S. J., al-Yaman F., Anders R. F., Coppel R. L., Novakovic S., Alpers M. P., Brown G. V. Diversity of agglutinating phenotype, cytoadherence, and rosette-forming characteristics of Plasmodium falciparum isolates from Papua New Guinean children. Am J Trop Med Hyg. 1994 Jul;51(1):45–55. doi: 10.4269/ajtmh.1994.51.45. [DOI] [PubMed] [Google Scholar]
  184. Rest J. R. Cerebral malaria in inbred mice. I. A new model and its pathology. Trans R Soc Trop Med Hyg. 1982;76(3):410–415. doi: 10.1016/0035-9203(82)90203-6. [DOI] [PubMed] [Google Scholar]
  185. Richie Thomas L., Saul Allan. Progress and challenges for malaria vaccines. Nature. 2002 Feb 7;415(6872):694–701. doi: 10.1038/415694a. [DOI] [PubMed] [Google Scholar]
  186. Ricke C. H., Staalsoe T., Koram K., Akanmori B. D., Riley E. M., Theander T. G., Hviid L. Plasma antibodies from malaria-exposed pregnant women recognize variant surface antigens on Plasmodium falciparum-infected erythrocytes in a parity-dependent manner and block parasite adhesion to chondroitin sulfate A. J Immunol. 2000 Sep 15;165(6):3309–3316. doi: 10.4049/jimmunol.165.6.3309. [DOI] [PubMed] [Google Scholar]
  187. Ringwald P., Peyron F., Lepers J. P., Rabarison P., Rakotomalala C., Razanamparany M., Rabodonirina M., Roux J., Le Bras J. Parasite virulence factors during falciparum malaria: rosetting, cytoadherence, and modulation of cytoadherence by cytokines. Infect Immun. 1993 Dec;61(12):5198–5204. doi: 10.1128/iai.61.12.5198-5204.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  188. Roberts D. J., Craig A. G., Berendt A. R., Pinches R., Nash G., Marsh K., Newbold C. I. Rapid switching to multiple antigenic and adhesive phenotypes in malaria. Nature. 1992 Jun 25;357(6380):689–692. doi: 10.1038/357689a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  189. Roberts D. J., Pain A., Kai O., Kortok M., Marsh K. Autoagglutination of malaria-infected red blood cells and malaria severity. Lancet. 2000 Apr 22;355(9213):1427–1428. doi: 10.1016/S0140-6736(00)02143-7. [DOI] [PubMed] [Google Scholar]
  190. Rogers N. J., Daramola O., Targett G. A., Hall B. S. CD36 and intercellular adhesion molecule 1 mediate adhesion of developing Plasmodium falciparum gametocytes. Infect Immun. 1996 Apr;64(4):1480–1483. doi: 10.1128/iai.64.4.1480-1483.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  191. Rogerson S. J., Beck H. P., Al-Yaman F., Currie B., Alpers M. P., Brown G. V. Disruption of erythrocyte rosettes and agglutination of erythrocytes infected with Plasmodium falciparum by the sera of Papua New Guineans. Trans R Soc Trop Med Hyg. 1996 Jan-Feb;90(1):80–84. doi: 10.1016/s0035-9203(96)90487-3. [DOI] [PubMed] [Google Scholar]
  192. Rogerson S. J., Tembenu R., Dobaño C., Plitt S., Taylor T. E., Molyneux M. E. Cytoadherence characteristics of Plasmodium falciparum-infected erythrocytes from Malawian children with severe and uncomplicated malaria. Am J Trop Med Hyg. 1999 Sep;61(3):467–472. doi: 10.4269/ajtmh.1999.61.467. [DOI] [PubMed] [Google Scholar]
  193. Rowe A., Obeiro J., Newbold C. I., Marsh K. Plasmodium falciparum rosetting is associated with malaria severity in Kenya. Infect Immun. 1995 Jun;63(6):2323–2326. doi: 10.1128/iai.63.6.2323-2326.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  194. Rowe J. A., Moulds J. M., Newbold C. I., Miller L. H. P. falciparum rosetting mediated by a parasite-variant erythrocyte membrane protein and complement-receptor 1. Nature. 1997 Jul 17;388(6639):292–295. doi: 10.1038/40888. [DOI] [PubMed] [Google Scholar]
  195. Rowe J. Alexandra, Obiero Jack, Marsh Kevin, Raza Ahmed. Short report: Positive correlation between rosetting and parasitemia in Plasmodium falciparum clinical isolates. Am J Trop Med Hyg. 2002 May;66(5):458–460. doi: 10.4269/ajtmh.2002.66.458. [DOI] [PubMed] [Google Scholar]
  196. Rutledge L. C., Gould D. J., Tantichareon B. Factors affecting the infection of anophelines with human malaria in Thailand. Trans R Soc Trop Med Hyg. 1969;63(5):613–619. doi: 10.1016/0035-9203(69)90180-1. [DOI] [PubMed] [Google Scholar]
  197. Sachs Jeffrey, Malaney Pia. The economic and social burden of malaria. Nature. 2002 Feb 7;415(6872):680–685. doi: 10.1038/415680a. [DOI] [PubMed] [Google Scholar]
  198. Simpson J. A., Aarons L., Collins W. E., Jeffery G. M., White N. J. Population dynamics of untreated Plasmodium falciparum malaria within the adult human host during the expansion phase of the infection. Parasitology. 2002 Mar;124(Pt 3):247–263. doi: 10.1017/s0031182001001202. [DOI] [PubMed] [Google Scholar]
  199. Simpson J. A., Silamut K., Chotivanich K., Pukrittayakamee S., White N. J. Red cell selectivity in malaria: a study of multiple-infected erythrocytes. Trans R Soc Trop Med Hyg. 1999 Mar-Apr;93(2):165–168. doi: 10.1016/s0035-9203(99)90295-x. [DOI] [PubMed] [Google Scholar]
  200. Smalley M. E., Abdalla S., Brown J. The distribution of Plasmodium falciparum in the peripheral blood and bone marrow of Gambian children. Trans R Soc Trop Med Hyg. 1981;75(1):103–105. doi: 10.1016/0035-9203(81)90019-5. [DOI] [PubMed] [Google Scholar]
  201. Smith J. D., Chitnis C. E., Craig A. G., Roberts D. J., Hudson-Taylor D. E., Peterson D. S., Pinches R., Newbold C. I., Miller L. H. Switches in expression of Plasmodium falciparum var genes correlate with changes in antigenic and cytoadherent phenotypes of infected erythrocytes. Cell. 1995 Jul 14;82(1):101–110. doi: 10.1016/0092-8674(95)90056-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  202. Snounou G., Jarra W., Viriyakosol S., Wood J. C., Brown K. N. Use of a DNA probe to analyse the dynamics of infection with rodent malaria parasites confirms that parasite clearance during crisis is predominantly strain- and species-specific. Mol Biochem Parasitol. 1989 Nov;37(1):37–46. doi: 10.1016/0166-6851(89)90100-x. [DOI] [PubMed] [Google Scholar]
  203. Snow R. W., Craig M., Deichmann U., Marsh K. Estimating mortality, morbidity and disability due to malaria among Africa's non-pregnant population. Bull World Health Organ. 1999;77(8):624–640. [PMC free article] [PubMed] [Google Scholar]
  204. Soubes S. C., Wellems T. E., Miller L. H. Plasmodium falciparum: a high proportion of parasites from a population of the Dd2 strain are able to invade erythrocytes by an alternative pathway. Exp Parasitol. 1997 May;86(1):79–83. doi: 10.1006/expr.1997.4153. [DOI] [PubMed] [Google Scholar]
  205. Stevenson M. M., Lyanga J. J., Skamene E. Murine malaria: genetic control of resistance to Plasmodium chabaudi. Infect Immun. 1982 Oct;38(1):80–88. doi: 10.1128/iai.38.1.80-88.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  206. Struchiner C. J., Halloran M. E., Spielman A. Modeling malaria vaccines. I: New uses for old ideas. Math Biosci. 1989 May;94(1):87–113. doi: 10.1016/0025-5564(89)90073-4. [DOI] [PubMed] [Google Scholar]
  207. Su X. Z., Heatwole V. M., Wertheimer S. P., Guinet F., Herrfeldt J. A., Peterson D. S., Ravetch J. A., Wellems T. E. The large diverse gene family var encodes proteins involved in cytoadherence and antigenic variation of Plasmodium falciparum-infected erythrocytes. Cell. 1995 Jul 14;82(1):89–100. doi: 10.1016/0092-8674(95)90055-1. [DOI] [PubMed] [Google Scholar]
  208. Taylor L. H., Read A. F. Why so few transmission stages? Reproductive restraint by malaria parasites. Parasitol Today. 1997 Apr;13(4):135–140. doi: 10.1016/s0169-4758(97)89810-9. [DOI] [PubMed] [Google Scholar]
  209. Taylor L. H., Walliker D., Read A. F. Mixed-genotype infections of the rodent malaria Plasmodium chabaudi are more infectious to mosquitoes than single-genotype infections. Parasitology. 1997 Aug;115(Pt 2):121–132. doi: 10.1017/s0031182097001145. [DOI] [PubMed] [Google Scholar]
  210. Tchuinkam T., Mulder B., Dechering K., Stoffels H., Verhave J. P., Cot M., Carnevale P., Meuwissen J. H., Robert V. Experimental infections of Anopheles gambiae with Plasmodium falciparum of naturally infected gametocyte carriers in Cameroon: factors influencing the infectivity to mosquitoes. Trop Med Parasitol. 1993 Dec;44(4):271–276. [PubMed] [Google Scholar]
  211. Timms R., Colegrave N., Chan B. H., Read A. F. The effect of parasite dose on disease severity in the rodent malaria Plasmodium chabaudi. Parasitology. 2001 Jul;123(Pt 1):1–11. doi: 10.1017/s0031182001008083. [DOI] [PubMed] [Google Scholar]
  212. Tourneur N., Scherf A., Wahlgren M., Gysin J. The squirrel monkey as an experimental model for Plasmodium falciparum erythrocyte rosette formation. Am J Trop Med Hyg. 1992 Nov;47(5):633–642. doi: 10.4269/ajtmh.1992.47.633. [DOI] [PubMed] [Google Scholar]
  213. Trenholme K. R., Gardiner D. L., Holt D. C., Thomas E. A., Cowman A. F., Kemp D. J. clag9: A cytoadherence gene in Plasmodium falciparum essential for binding of parasitized erythrocytes to CD36. Proc Natl Acad Sci U S A. 2000 Apr 11;97(8):4029–4033. doi: 10.1073/pnas.040561197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  214. Treutiger C. J., Hedlund I., Helmby H., Carlson J., Jepson A., Twumasi P., Kwiatkowski D., Greenwood B. M., Wahlgren M. Rosette formation in Plasmodium falciparum isolates and anti-rosette activity of sera from Gambians with cerebral or uncomplicated malaria. Am J Trop Med Hyg. 1992 May;46(5):503–510. doi: 10.4269/ajtmh.1992.46.503. [DOI] [PubMed] [Google Scholar]
  215. Turner C. M., Aslam N., Dye C. Replication, differentiation, growth and the virulence of Trypanosoma brucei infections. Parasitology. 1995 Sep;111(Pt 3):289–300. doi: 10.1017/s0031182000081841. [DOI] [PubMed] [Google Scholar]
  216. Udeinya I. J., Graves P. M., Carter R., Aikawa M., Miller L. H. Plasmodium falciparum: effect of time in continuous culture on binding to human endothelial cells and amelanotic melanoma cells. Exp Parasitol. 1983 Oct;56(2):207–214. doi: 10.1016/0014-4894(83)90064-4. [DOI] [PubMed] [Google Scholar]
  217. Udomsangpetch R., Brown A. E., Smith C. D., Webster H. K. Rosette formation by Plasmodium coatneyi-infected red blood cells. Am J Trop Med Hyg. 1991 Apr;44(4):399–401. doi: 10.4269/ajtmh.1991.44.399. [DOI] [PubMed] [Google Scholar]
  218. Udomsanpetch R., Thanikkul K., Pukrittayakamee S., White N. J. Rosette formation by Plasmodium vivax. Trans R Soc Trop Med Hyg. 1995 Nov-Dec;89(6):635–637. doi: 10.1016/0035-9203(95)90422-0. [DOI] [PubMed] [Google Scholar]
  219. Urban Britta C., Roberts David J. Malaria, monocytes, macrophages and myeloid dendritic cells: sticking of infected erythrocytes switches off host cells. Curr Opin Immunol. 2002 Aug;14(4):458–465. doi: 10.1016/s0952-7915(02)00368-0. [DOI] [PubMed] [Google Scholar]
  220. Voller A., Rossan R. N. Immunological studies with simian malarias. I. Antigenic variants of Plasmodium cynomolgi bastianellii. Trans R Soc Trop Med Hyg. 1969;63(1):46–56. doi: 10.1016/0035-9203(69)90065-0. [DOI] [PubMed] [Google Scholar]
  221. Vuong P. N., Richard F., Snounou G., Coquelin F., Rénia L., Gonnet F., Chabaud A. G., Landau I. Development of irreversible lesions in the brain, heart and kidney following acute and chronic murine malaria infection. Parasitology. 1999 Dec;119(Pt 6):543–553. doi: 10.1017/s0031182099005120. [DOI] [PubMed] [Google Scholar]
  222. Wahl Lindi M., Gerrish Philip J., Saika-Voivod Ivan. Evaluating the impact of population bottlenecks in experimental evolution. Genetics. 2002 Oct;162(2):961–971. doi: 10.1093/genetics/162.2.961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  223. Wahlgren M., Carlson J., Ruangjirachuporn W., Conway D., Helmby H., Martinez A., Patarroyo M. E., Riley E. Geographical distribution of Plasmodium falciparum erythrocyte rosetting and frequency of rosetting antibodies in human sera. Am J Trop Med Hyg. 1990 Oct;43(4):333–338. doi: 10.4269/ajtmh.1990.43.333. [DOI] [PubMed] [Google Scholar]
  224. Wahlgren M., Carlson J., Udomsangpetch R., Perlmann P. Why do Plasmodium falciparumm-infected erythrocytes form spontaneous erythrocyte rosettes? Parasitol Today. 1989 Jun;5(6):183–185. doi: 10.1016/0169-4758(89)90141-5. [DOI] [PubMed] [Google Scholar]
  225. Weiss Robin A. Virulence and pathogenesis. Trends Microbiol. 2002 Jul;10(7):314–317. doi: 10.1016/s0966-842x(02)02391-0. [DOI] [PubMed] [Google Scholar]
  226. White N. J., Ho M. The pathophysiology of malaria. Adv Parasitol. 1992;31:83–173. doi: 10.1016/s0065-308x(08)60021-4. [DOI] [PubMed] [Google Scholar]
  227. Yoeli M., Hargreaves B. J. Brain capillary blockage produced by a virulent strain of rodent malaria. Science. 1974 May 3;184(4136):572–573. doi: 10.1126/science.184.4136.572. [DOI] [PubMed] [Google Scholar]
  228. Yoeli M., Hargreaves B., Carter R., Walliker D. Sudden increase in virulence in a strain of Plasmodium berghei yoelii. Ann Trop Med Parasitol. 1975 Jun;69(2):173–178. doi: 10.1080/00034983.1975.11686998. [DOI] [PubMed] [Google Scholar]
  229. al-Khedery B., Barnwell J. W., Galinski M. R. Antigenic variation in malaria: a 3' genomic alteration associated with the expression of a P. knowlesi variant antigen. Mol Cell. 1999 Feb;3(2):131–141. doi: 10.1016/s1097-2765(00)80304-4. [DOI] [PubMed] [Google Scholar]
  230. al-Yaman F., Genton B., Mokela D., Raiko A., Kati S., Rogerson S., Reeder J., Alpers M. Human cerebral malaria: lack of significant association between erythrocyte rosetting and disease severity. Trans R Soc Trop Med Hyg. 1995 Jan-Feb;89(1):55–58. doi: 10.1016/0035-9203(95)90658-4. [DOI] [PubMed] [Google Scholar]
  231. del Portillo H. A., Fernandez-Becerra C., Bowman S., Oliver K., Preuss M., Sanchez C. P., Schneider N. K., Villalobos J. M., Rajandream M. A., Harris D. A superfamily of variant genes encoded in the subtelomeric region of Plasmodium vivax. Nature. 2001 Apr 12;410(6830):839–842. doi: 10.1038/35071118. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES