Abstract
The dominant cerebellar ataxias (ADCAs) represent a clinically and genetically heterogeneous group of disorders linked by progressive deterioration in balance and coordination. The utility of genetic classification of the ADCAs has been highlighted by the striking variability in clinical phenotype observed within families and the overlap in clinical phenotype observed between those with different genotypes. The recent demonstration that spinocerebellar ataxia type 2 (SCA2) is caused by a CAG repeat expansion within the ataxin-2 gene has allowed us to determine the frequency of SCA2 compared with SCA1, SCA3/Machado-Joseph disease (MJD), and dentatorubropallidoluysian atrophy (DRPLA) in patients with sporadic and inherited ataxia. SCA2 accounts for 13% of patients with ADCA (without retinal degeneration), intermediate between SCA1 and SCA3/MJD, which account for 6% and 23%, respectively. Together, SCA1, SCA2, and SCA3/MJD constitute >40% of the mutations leading to ADCA I in our population. No patient without a family history of ataxia, or with a pure cerebellar or spastic syndrome, tested positive for SCA1, SCA2, or SCA3. No overlap in ataxin-2 allele size between normal and disease chromosomes, or intermediate-sized alleles, were observed. Repeat length correlated inversely with age at onset, accounting for approximately 80% of the variability in onset age. Haplotype analysis provided no evidence for a single founder chromosome, and diverse ethnic origins were observed among SCA2 kindreds. In addition, a wide spectrum of clinical phenotypes was observed among SCA2 patients, including typical mild dominant ataxia, the MJD phenotype with facial fasciculations and lid retraction, and early-onset ataxia with a rapid course, chorea, and dementia.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Belal S., Cancel G., Stevanin G., Hentati F., Khati C., Ben Hamida C., Auburger G., Agid Y., Ben Hamida M., Brice A. Clinical and genetic analysis of a Tunisian family with autosomal dominant cerebellar ataxia type 1 linked to the SCA2 locus. Neurology. 1994 Aug;44(8):1423–1426. doi: 10.1212/wnl.44.8.1423. [DOI] [PubMed] [Google Scholar]
- Benomar A., Krols L., Stevanin G., Cancel G., LeGuern E., David G., Ouhabi H., Martin J. J., Dürr A., Zaim A. The gene for autosomal dominant cerebellar ataxia with pigmentary macular dystrophy maps to chromosome 3p12-p21.1. Nat Genet. 1995 May;10(1):84–88. doi: 10.1038/ng0595-84. [DOI] [PubMed] [Google Scholar]
- Burke J. R., Wingfield M. S., Lewis K. E., Roses A. D., Lee J. E., Hulette C., Pericak-Vance M. A., Vance J. M. The Haw River syndrome: dentatorubropallidoluysian atrophy (DRPLA) in an African-American family. Nat Genet. 1994 Aug;7(4):521–524. doi: 10.1038/ng0894-521. [DOI] [PubMed] [Google Scholar]
- Cancel G., Abbas N., Stevanin G., Dürr A., Chneiweiss H., Néri C., Duyckaerts C., Penet C., Cann H. M., Agid Y. Marked phenotypic heterogeneity associated with expansion of a CAG repeat sequence at the spinocerebellar ataxia 3/Machado-Joseph disease locus. Am J Hum Genet. 1995 Oct;57(4):809–816. [PMC free article] [PubMed] [Google Scholar]
- Cancel G., Stevanin G., Dürr A., Chneiweiss H., Penet C., Pothin Y., Agid Y., Brice A. SCA2 is not a major locus for ADCA type I in French families. Am J Med Genet. 1995 Oct 9;60(5):382–385. doi: 10.1002/ajmg.1320600507. [DOI] [PubMed] [Google Scholar]
- Chung M. Y., Ranum L. P., Duvick L. A., Servadio A., Zoghbi H. Y., Orr H. T. Evidence for a mechanism predisposing to intergenerational CAG repeat instability in spinocerebellar ataxia type I. Nat Genet. 1993 Nov;5(3):254–258. doi: 10.1038/ng1193-254. [DOI] [PubMed] [Google Scholar]
- Dubourg O., Dürr A., Cancel G., Stevanin G., Chneiweiss H., Penet C., Agid Y., Brice A. Analysis of the SCA1 CAG repeat in a large number of families with dominant ataxia: clinical and molecular correlations. Ann Neurol. 1995 Feb;37(2):176–180. doi: 10.1002/ana.410370207. [DOI] [PubMed] [Google Scholar]
- Dürr A., Brice A., Lepage-Lezin A., Cancel G., Smadja D., Vernant J. C., Agid Y. Autosomal dominant cerebellar ataxia type I linked to chromosome 12q (SCA2: spinocerebellar ataxia type 2). Clin Neurosci. 1995;3(1):12–16. [PubMed] [Google Scholar]
- Dürr A., Chneiweiss H., Khati C., Stevanin G., Cancel G., Feingold J., Agid Y., Brice A. Phenotypic variability in autosomal dominant cerebellar ataxia type I is unrelated to genetic heterogeneity. Brain. 1993 Dec;116(Pt 6):1497–1508. doi: 10.1093/brain/116.6.1497. [DOI] [PubMed] [Google Scholar]
- Dürr A., Smadja D., Cancel G., Lezin A., Stevanin G., Mikol J., Bellance R., Buisson G. G., Chneiweiss H., Dellanave J. Autosomal dominant cerebellar ataxia type I in Martinique (French West Indies). Clinical and neuropathological analysis of 53 patients from three unrelated SCA2 families. Brain. 1995 Dec;118(Pt 6):1573–1581. doi: 10.1093/brain/118.6.1573. [DOI] [PubMed] [Google Scholar]
- Flanigan K., Gardner K., Alderson K., Galster B., Otterud B., Leppert M. F., Kaplan C., Ptácek L. J. Autosomal dominant spinocerebellar ataxia with sensory axonal neuropathy (SCA4): clinical description and genetic localization to chromosome 16q22.1. Am J Hum Genet. 1996 Aug;59(2):392–399. [PMC free article] [PubMed] [Google Scholar]
- Gacy A. M., Goellner G., Juranić N., Macura S., McMurray C. T. Trinucleotide repeats that expand in human disease form hairpin structures in vitro. Cell. 1995 May 19;81(4):533–540. doi: 10.1016/0092-8674(95)90074-8. [DOI] [PubMed] [Google Scholar]
- Gispert S., Twells R., Orozco G., Brice A., Weber J., Heredero L., Scheufler K., Riley B., Allotey R., Nothers C. Chromosomal assignment of the second locus for autosomal dominant cerebellar ataxia (SCA2) to chromosome 12q23-24.1. Nat Genet. 1993 Jul;4(3):295–299. doi: 10.1038/ng0793-295. [DOI] [PubMed] [Google Scholar]
- Giunti P., Sweeney M. G., Harding A. E. Detection of the Machado-Joseph disease/spinocerebellar ataxia three trinucleotide repeat expansion in families with autosomal dominant motor disorders, including the Drew family of Walworth. Brain. 1995 Oct;118(Pt 5):1077–1085. doi: 10.1093/brain/118.5.1077. [DOI] [PubMed] [Google Scholar]
- Giunti P., Sweeney M. G., Spadaro M., Jodice C., Novelletto A., Malaspina P., Frontali M., Harding A. E. The trinucleotide repeat expansion on chromosome 6p (SCA1) in autosomal dominant cerebellar ataxias. Brain. 1994 Aug;117(Pt 4):645–649. doi: 10.1093/brain/117.4.645. [DOI] [PubMed] [Google Scholar]
- Harding A. E. The clinical features and classification of the late onset autosomal dominant cerebellar ataxias. A study of 11 families, including descendants of the 'the Drew family of Walworth'. Brain. 1982 Mar;105(Pt 1):1–28. doi: 10.1093/brain/105.1.1. [DOI] [PubMed] [Google Scholar]
- Higgins J. J., Nee L. E., Vasconcelos O., Ide S. E., Lavedan C., Goldfarb L. G., Polymeropoulos M. H. Mutations in American families with spinocerebellar ataxia (SCA) type 3: SCA3 is allelic to Machado-Joseph disease. Neurology. 1996 Jan;46(1):208–213. doi: 10.1212/wnl.46.1.208. [DOI] [PubMed] [Google Scholar]
- Imbert G., Saudou F., Yvert G., Devys D., Trottier Y., Garnier J. M., Weber C., Mandel J. L., Cancel G., Abbas N. Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats. Nat Genet. 1996 Nov;14(3):285–291. doi: 10.1038/ng1196-285. [DOI] [PubMed] [Google Scholar]
- Lezin A., Cancel G., Stevanin G., Smadja D., Vernant J. C., Dürr A., Martial J., Buisson G. G., Bellance R., Chneiweiss H. Autosomal dominant cerebellar ataxia type I in Martinique (French West Indies): genetic analysis of three unrelated SCA2 families. Hum Genet. 1996 May;97(5):671–676. doi: 10.1007/BF02281881. [DOI] [PubMed] [Google Scholar]
- Maciel P., Gaspar C., DeStefano A. L., Silveira I., Coutinho P., Radvany J., Dawson D. M., Sudarsky L., Guimarães J., Loureiro J. E. Correlation between CAG repeat length and clinical features in Machado-Joseph disease. Am J Hum Genet. 1995 Jul;57(1):54–61. [PMC free article] [PubMed] [Google Scholar]
- Maruyama H., Kawakami H., Nakamura S. Reevaluation of the exact CAG repeat length in hereditary cerebellar ataxias using highly denaturing conditions and long PCR. Hum Genet. 1996 May;97(5):591–595. doi: 10.1007/BF02281866. [DOI] [PubMed] [Google Scholar]
- McMurray C. T. Mechanisms of DNA expansion. Chromosoma. 1995 Oct;104(1):2–13. doi: 10.1007/BF00352220. [DOI] [PubMed] [Google Scholar]
- Nagafuchi S., Yanagisawa H., Sato K., Shirayama T., Ohsaki E., Bundo M., Takeda T., Tadokoro K., Kondo I., Murayama N. Dentatorubral and pallidoluysian atrophy expansion of an unstable CAG trinucleotide on chromosome 12p. Nat Genet. 1994 Jan;6(1):14–18. doi: 10.1038/ng0194-14. [DOI] [PubMed] [Google Scholar]
- Nechiporuk A., Lopes-Cendes I., Nechiporuk T., Starkman S., Andermann E., Rouleau G. A., Weissenbach J. S., Kort E., Pulst S. M. Genetic mapping of the spinocerebellar ataxia type 2 gene on human chromosome 12. Neurology. 1996 Jun;46(6):1731–1735. doi: 10.1212/wnl.46.6.1731. [DOI] [PubMed] [Google Scholar]
- Orozco Diaz G., Nodarse Fleites A., Cordovés Sagaz R., Auburger G. Autosomal dominant cerebellar ataxia: clinical analysis of 263 patients from a homogeneous population in Holguín, Cuba. Neurology. 1990 Sep;40(9):1369–1375. doi: 10.1212/wnl.40.9.1369. [DOI] [PubMed] [Google Scholar]
- Orr H. T., Chung M. Y., Banfi S., Kwiatkowski T. J., Jr, Servadio A., Beaudet A. L., McCall A. E., Duvick L. A., Ranum L. P., Zoghbi H. Y. Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nat Genet. 1993 Jul;4(3):221–226. doi: 10.1038/ng0793-221. [DOI] [PubMed] [Google Scholar]
- Pulst S. M., Nechiporuk A., Nechiporuk T., Gispert S., Chen X. N., Lopes-Cendes I., Pearlman S., Starkman S., Orozco-Diaz G., Lunkes A. Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nat Genet. 1996 Nov;14(3):269–276. doi: 10.1038/ng1196-269. [DOI] [PubMed] [Google Scholar]
- Pulst S. M., Nechiporuk A., Starkman S. Anticipation in spinocerebellar ataxia type 2. Nat Genet. 1993 Sep;5(1):8–10. doi: 10.1038/ng0993-8c. [DOI] [PubMed] [Google Scholar]
- Ranum L. P., Chung M. Y., Banfi S., Bryer A., Schut L. J., Ramesar R., Duvick L. A., McCall A., Subramony S. H., Goldfarb L. Molecular and clinical correlations in spinocerebellar ataxia type I: evidence for familial effects on the age at onset. Am J Hum Genet. 1994 Aug;55(2):244–252. [PMC free article] [PubMed] [Google Scholar]
- Ranum L. P., Lundgren J. K., Schut L. J., Ahrens M. J., Perlman S., Aita J., Bird T. D., Gomez C., Orr H. T. Spinocerebellar ataxia type 1 and Machado-Joseph disease: incidence of CAG expansions among adult-onset ataxia patients from 311 families with dominant, recessive, or sporadic ataxia. Am J Hum Genet. 1995 Sep;57(3):603–608. [PMC free article] [PubMed] [Google Scholar]
- Ranum L. P., Schut L. J., Lundgren J. K., Orr H. T., Livingston D. M. Spinocerebellar ataxia type 5 in a family descended from the grandparents of President Lincoln maps to chromosome 11. Nat Genet. 1994 Nov;8(3):280–284. doi: 10.1038/ng1194-280. [DOI] [PubMed] [Google Scholar]
- Rosenberg R. N. Autosomal dominant cerebellar phenotypes: the genotype will settle the issue. Neurology. 1990 Sep;40(9):1329–1331. doi: 10.1212/wnl.40.9.1329. [DOI] [PubMed] [Google Scholar]
- Rubinsztein D. C., Leggo J., Coles R., Almqvist E., Biancalana V., Cassiman J. J., Chotai K., Connarty M., Crauford D., Curtis A. Phenotypic characterization of individuals with 30-40 CAG repeats in the Huntington disease (HD) gene reveals HD cases with 36 repeats and apparently normal elderly individuals with 36-39 repeats. Am J Hum Genet. 1996 Jul;59(1):16–22. [PMC free article] [PubMed] [Google Scholar]
- Sanpei K., Takano H., Igarashi S., Sato T., Oyake M., Sasaki H., Wakisaka A., Tashiro K., Ishida Y., Ikeuchi T. Identification of the spinocerebellar ataxia type 2 gene using a direct identification of repeat expansion and cloning technique, DIRECT. Nat Genet. 1996 Nov;14(3):277–284. doi: 10.1038/ng1196-277. [DOI] [PubMed] [Google Scholar]
- Sasaki H. [Linkage study of hereditary spinocerebellar ataxia, and probable correlation for the loci to the disease phenotypes]. Rinsho Shinkeigaku. 1993 Dec;33(12):1285–1287. [PubMed] [Google Scholar]
- Schöls L., Vieira-Saecker A. M., Schöls S., Przuntek H., Epplen J. T., Riess O. Trinucleotide expansion within the MJD1 gene presents clinically as spinocerebellar ataxia and occurs most frequently in German SCA patients. Hum Mol Genet. 1995 Jun;4(6):1001–1005. doi: 10.1093/hmg/4.6.1001. [DOI] [PubMed] [Google Scholar]
- Silveira I., Lopes-Cendes I., Kish S., Maciel P., Gaspar C., Coutinho P., Botez M. I., Teive H., Arruda W., Steiner C. E. Frequency of spinocerebellar ataxia type 1, dentatorubropallidoluysian atrophy, and Machado-Joseph disease mutations in a large group of spinocerebellar ataxia patients. Neurology. 1996 Jan;46(1):214–218. doi: 10.1212/wnl.46.1.214. [DOI] [PubMed] [Google Scholar]
- Snell R. G., MacMillan J. C., Cheadle J. P., Fenton I., Lazarou L. P., Davies P., MacDonald M. E., Gusella J. F., Harper P. S., Shaw D. J. Relationship between trinucleotide repeat expansion and phenotypic variation in Huntington's disease. Nat Genet. 1993 Aug;4(4):393–397. doi: 10.1038/ng0893-393. [DOI] [PubMed] [Google Scholar]
- Stevanin G., Cancel G., Didierjean O., Dürr A., Abbas N., Cassa E., Feingold J., Agid Y., Brice A. Linkage disequilibrium at the Machado-Joseph disease/spinal cerebellar ataxia 3 locus: evidence for a common founder effect in French and Portuguese-Brazilian families as well as a second ancestral Portuguese-Azorean mutation. Am J Hum Genet. 1995 Nov;57(5):1247–1250. [PMC free article] [PubMed] [Google Scholar]
- Sudarsky L., Coutinho P. Machado-Joseph disease. Clin Neurosci. 1995;3(1):17–22. [PubMed] [Google Scholar]
- Telenius H., Almqvist E., Kremer B., Spence N., Squitieri F., Nichol K., Grandell U., Starr E., Benjamin C., Castaldo I. Somatic mosaicism in sperm is associated with intergenerational (CAG)n changes in Huntington disease. Hum Mol Genet. 1995 Feb;4(2):189–195. doi: 10.1093/hmg/4.2.189. [DOI] [PubMed] [Google Scholar]
- Trottier Y., Lutz Y., Stevanin G., Imbert G., Devys D., Cancel G., Saudou F., Weber C., David G., Tora L. Polyglutamine expansion as a pathological epitope in Huntington's disease and four dominant cerebellar ataxias. Nature. 1995 Nov 23;378(6555):403–406. doi: 10.1038/378403a0. [DOI] [PubMed] [Google Scholar]
- Twells R., Yenchitsomanus P. T., Sirinavin C., Allotey R., Poungvarin N., Viriyavejakul A., Cemal C., Weber J., Farrall M., Rodprasert P. Autosomal dominant cerebellar ataxia with dementia: evidence for a fourth disease locus. Hum Mol Genet. 1994 Jan;3(1):177–180. doi: 10.1093/hmg/3.1.177. [DOI] [PubMed] [Google Scholar]
- Ueno S., Kondoh K., Kotani Y., Komure O., Kuno S., Kawai J., Hazama F., Sano A. Somatic mosaicism of CAG repeat in dentatorubral-pallidoluysian atrophy (DRPLA). Hum Mol Genet. 1995 Apr;4(4):663–666. doi: 10.1093/hmg/4.4.663. [DOI] [PubMed] [Google Scholar]
- Warner T. T., Lennox G. G., Janota I., Harding A. E. Autosomal-dominant dentatorubropallidoluysian atrophy in the United Kingdom. Mov Disord. 1994 May;9(3):289–296. doi: 10.1002/mds.870090302. [DOI] [PubMed] [Google Scholar]
- Watkins W. S., Bamshad M., Jorde L. B. Population genetics of trinucleotide repeat polymorphisms. Hum Mol Genet. 1995 Sep;4(9):1485–1491. doi: 10.1093/hmg/4.9.1485. [DOI] [PubMed] [Google Scholar]