Skip to main content
Archives of Disease in Childhood logoLink to Archives of Disease in Childhood
. 2000 Feb;82(2):169–172. doi: 10.1136/adc.82.2.169

Effect of oral antibiotics on intestinal production of propionic acid

A Mellon 1, S Deshpande 1, J Mathers 1, K Bartlett 1
PMCID: PMC1718213  PMID: 10648377

Abstract

BACKGROUND—Propionic acid derived from colonic bacterial fermentation contributes substantially to overall propionate load in children with disorders of propionate metabolism, and its reduction is important for adequate metabolic control.
AIMS—To evaluate the in vitro and in vivo effects of antibiotic treatment on propionate production by colonic bacteria, and plasma propionate concentrations in a child with propionic acidaemia.
METHODS—In vitro fermentation techniques were used to study the effects of addition of antibiotics (metronidazole, clindamycin, erythromycin, and vancomycin) on net faecal production of short chain fatty acids including propionic acid. Courses of oral antibiotics of 7 days duration were used to assess the in vivo effects on faecal propionate production and metabolic control including plasma propionate concentrations.
RESULTS—Metronidazole produced the largest and most consistent reduction (77-84%) in the production in vitro of propionate from faecal homogenates. Oral administration of metronidazole reduced faecal propionate production by 43% within 24 hours of treatment; a 7day course virtually eliminated it for the next 3 weeks. These reductions were accompanied by substantially lowered plasma propionate concentrations during the same period.
CONCLUSIONS—Intermittent courses of oral metronidazole might be as effective as continuous treatment in reducing gut propionate production in children with disorders of propionate metabolism.



Full Text

The Full Text of this article is available as a PDF (106.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bain M. D., Jones M., Borriello S. P., Reed P. J., Tracey B. M., Chalmers R. A., Stacey T. E. Contribution of gut bacterial metabolism to human metabolic disease. Lancet. 1988 May 14;1(8594):1078–1079. doi: 10.1016/s0140-6736(88)91898-3. [DOI] [PubMed] [Google Scholar]
  2. Clausen M. R., Bonnén H., Tvede M., Mortensen P. B. Colonic fermentation to short-chain fatty acids is decreased in antibiotic-associated diarrhea. Gastroenterology. 1991 Dec;101(6):1497–1504. doi: 10.1016/0016-5085(91)90384-w. [DOI] [PubMed] [Google Scholar]
  3. Harrison J., Hodson A. W., Skillen A. W., Stappenbeck R., Agius L., Alberti K. G. Blood glucose, lactate, pyruvate, glycerol, 3-hydroxybutyrate and acetoacetate measurements in man using a centrifugal analyser with a fluorimetric attachment. J Clin Chem Clin Biochem. 1988 Mar;26(3):141–146. doi: 10.1515/cclm.1988.26.3.141. [DOI] [PubMed] [Google Scholar]
  4. Høverstad T., Carlstedt-Duke B., Lingaas E., Midtvedt T., Norin K. E., Saxerholt H., Steinbakk M. Influence of ampicillin, clindamycin, and metronidazole on faecal excretion of short-chain fatty acids in healthy subjects. Scand J Gastroenterol. 1986 Jun;21(5):621–626. doi: 10.3109/00365528609003109. [DOI] [PubMed] [Google Scholar]
  5. Høverstad T., Carlstedt-Duke B., Lingaas E., Norin E., Saxerholt H., Steinbakk M., Midtvedt T. Influence of oral intake of seven different antibiotics on faecal short-chain fatty acid excretion in healthy subjects. Scand J Gastroenterol. 1986 Oct;21(8):997–1003. doi: 10.3109/00365528608996411. [DOI] [PubMed] [Google Scholar]
  6. Mathers J. C., Fernandez F., Hill M. J., McCarthy P. T., Shearer M. J., Oxley A. Dietary modification of potential vitamin K supply from enteric bacterial menaquinones in rats. Br J Nutr. 1990 May;63(3):639–652. doi: 10.1079/bjn19900150. [DOI] [PubMed] [Google Scholar]
  7. Miller T. L., Wolin M. J. Fermentations by saccharolytic intestinal bacteria. Am J Clin Nutr. 1979 Jan;32(1):164–172. doi: 10.1093/ajcn/32.1.164. [DOI] [PubMed] [Google Scholar]
  8. Remesy C., Demigne C. Determination of volatile fatty acids in plasma after ethanolic extraction. Biochem J. 1974 Jul;141(1):85–91. doi: 10.1042/bj1410085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Thompson G. N., Chalmers R. A., Walter J. H., Bresson J. L., Lyonnet S. L., Reed P. J., Saudubray J. M., Leonard J. V., Halliday D. The use of metronidazole in management of methylmalonic and propionic acidaemias. Eur J Pediatr. 1990 Aug;149(11):792–796. doi: 10.1007/BF01957284. [DOI] [PubMed] [Google Scholar]
  10. Thompson G. N., Walter J. H., Bresson J. L., Ford G. C., Lyonnet S. L., Chalmers R. A., Saudubray J. M., Leonard J. V., Halliday D. Sources of propionate in inborn errors of propionate metabolism. Metabolism. 1990 Nov;39(11):1133–1137. doi: 10.1016/0026-0495(90)90084-p. [DOI] [PubMed] [Google Scholar]
  11. Walter J. H., Thompson G. N., Leonard J. V., Bartlett K., Halliday D. Contribution of aminoacid catabolism to propionate production in methylmalonic acidaemia. Lancet. 1989 Jun 10;1(8650):1298–1299. doi: 10.1016/s0140-6736(89)92689-5. [DOI] [PubMed] [Google Scholar]

Articles from Archives of Disease in Childhood are provided here courtesy of BMJ Publishing Group

RESOURCES