Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 2000 Apr;68(4):458–464. doi: 10.1136/jnnp.68.4.458

Stepping before standing: hip muscle function in stepping and standing balance after stroke

S Kirker 1, D Simpson 1, J Jenner 1, A Wing 1
PMCID: PMC1736885  PMID: 10727481

Abstract

OBJECTIVE—To compare the pattern of pelvic girdle muscle activation in normal subjects and hemiparetic patients while stepping and maintaining standing balance.
DESIGN—Group comparison.
METHOD—Seventeen patients who had regained the ability to walk after a single hemiparetic stroke were studied together with 16 normal controls. Median interval between stroke and testing was 17 months. Amplitude and onset latency of surface EMG activity in hip abductors and adductors were recorded in response to sideways pushes in either direction while standing. Similar recordings were made in the same subjects during gait initiation and a single stride.
RESULTS—In the standing balance task, normal subjects resisted a sideways push to the left with the left gluteus medius (74 ms) and with the right adductor (111 ms), and vice versa. In hemiparetic patients, the amplitude of activity was reduced in the hemiparetic muscles, the onset latencies of which were delayed (gluteus medius 96 ms, adductor 144 ms). Contralateral, non-paretic, adductor activity was increased after a push towards the hemiparetic side of patients with stroke and the latency was normal (110 ms). During self initiated sideways weight shifts at gait initiation, hemiplegic muscle activation was impaired. By contrast, the pattern and peak amplitude of hip muscle activation in stepping was normal in both hemiparetic and non-hemiparetic muscles of the subjects with stroke.
CONCLUSIONS—In ambulant patients with stroke, a normal pattern of activation of hemiparetic muscles is seen in stepping whereas the response of these muscles to a perturbation while standing remains grossly impaired and is compensated by increased activity of the contralateral muscles. This suggests that hemiparetic patients should be able to step before regaining standing balance.



Full Text

The Full Text of this article is available as a PDF (230.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brunt D., Vander Linden D. W., Behrman A. L. The relation between limb loading and control parameters of gait initiation in persons with stroke. Arch Phys Med Rehabil. 1995 Jul;76(7):627–634. doi: 10.1016/s0003-9993(95)80631-8. [DOI] [PubMed] [Google Scholar]
  2. Crenna P., Schieppati M., de Curtis M. Long-latency, nonreciprocal reflex responses of antagonistic hind limb muscles after cutaneous nerve stimulation in the cat. Exp Neurol. 1982 Apr;76(1):58–71. doi: 10.1016/0014-4886(82)90101-7. [DOI] [PubMed] [Google Scholar]
  3. Diener H. C., Bacher M., Guschlbauer B., Thomas C., Dichgans J. The coordination of posture and voluntary movement in patients with hemiparesis. J Neurol. 1993;240(3):161–167. doi: 10.1007/BF00857522. [DOI] [PubMed] [Google Scholar]
  4. Dietz V., Colombo G., Jensen L. Locomotor activity in spinal man. Lancet. 1994 Nov 5;344(8932):1260–1263. doi: 10.1016/s0140-6736(94)90751-x. [DOI] [PubMed] [Google Scholar]
  5. Dietz V., Quintern J., Berger W. Electrophysiological studies of gait in spasticity and rigidity. Evidence that altered mechanical properties of muscle contribute to hypertonia. Brain. 1981 Sep;104(3):431–449. doi: 10.1093/brain/104.3.431. [DOI] [PubMed] [Google Scholar]
  6. Dietz V. Role of peripheral afferents and spinal reflexes in normal and impaired human locomotion. Rev Neurol (Paris) 1987;143(4):241–254. [PubMed] [Google Scholar]
  7. Edgerton V. R., Roy R. R., Hodgson J. A., Prober R. J., de Guzman C. P., de Leon R. Potential of adult mammalian lumbosacral spinal cord to execute and acquire improved locomotion in the absence of supraspinal input. J Neurotrauma. 1992 Mar;9 (Suppl 1):S119–S128. [PubMed] [Google Scholar]
  8. Elble R. J., Moody C., Leffler K., Sinha R. The initiation of normal walking. Mov Disord. 1994 Mar;9(2):139–146. doi: 10.1002/mds.870090203. [DOI] [PubMed] [Google Scholar]
  9. Gilles M., Wing A. M., Kirker S. G. Lateral balance organisation in human stance in response to a random or predictable perturbation. Exp Brain Res. 1999 Jan;124(2):137–144. doi: 10.1007/s002210050607. [DOI] [PubMed] [Google Scholar]
  10. HIRSCHBERG G. G., NATHANSON M. Electromyographic recording of muscular activity in normal and spastic gaits. Arch Phys Med Rehabil. 1952 Apr;33(4):217–225. [PubMed] [Google Scholar]
  11. Hesse S., Bertelt C., Jahnke M. T., Schaffrin A., Baake P., Malezic M., Mauritz K. H. Treadmill training with partial body weight support compared with physiotherapy in nonambulatory hemiparetic patients. Stroke. 1995 Jun;26(6):976–981. doi: 10.1161/01.str.26.6.976. [DOI] [PubMed] [Google Scholar]
  12. Horak F. B., Esselman P., Anderson M. E., Lynch M. K. The effects of movement velocity, mass displaced, and task certainty on associated postural adjustments made by normal and hemiplegic individuals. J Neurol Neurosurg Psychiatry. 1984 Sep;47(9):1020–1028. doi: 10.1136/jnnp.47.9.1020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Horak F. B., Nashner L. M. Central programming of postural movements: adaptation to altered support-surface configurations. J Neurophysiol. 1986 Jun;55(6):1369–1381. doi: 10.1152/jn.1986.55.6.1369. [DOI] [PubMed] [Google Scholar]
  14. Jenner J. R., Stephens J. A. Cutaneous reflex responses and their central nervous pathways studied in man. J Physiol. 1982 Dec;333:405–419. doi: 10.1113/jphysiol.1982.sp014461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Knutsson E., Richards C. Different types of disturbed motor control in gait of hemiparetic patients. Brain. 1979 Jun;102(2):405–430. doi: 10.1093/brain/102.2.405. [DOI] [PubMed] [Google Scholar]
  16. Marsden C. D., Merton P. A., Morton H. B. Stretch reflex and servo action in a variety of human muscles. J Physiol. 1976 Jul;259(2):531–560. doi: 10.1113/jphysiol.1976.sp011481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Massion J. Movement, posture and equilibrium: interaction and coordination. Prog Neurobiol. 1992;38(1):35–56. doi: 10.1016/0301-0082(92)90034-c. [DOI] [PubMed] [Google Scholar]
  18. Miller S., Scott P. D. The spinal locomotor generator. Exp Brain Res. 1977 Nov 24;30(2-3):387–403. doi: 10.1007/BF00237264. [DOI] [PubMed] [Google Scholar]
  19. Naito A., Shimizu Y., Handa Y. Analyses of treadmill locomotion in adult spinal dogs. Neurosci Res. 1990 Aug;8(4):281–290. doi: 10.1016/0168-0102(90)90034-c. [DOI] [PubMed] [Google Scholar]
  20. Nicol D. J., Granat M. H., Baxendale R. H., Tuson S. J. Evidence for a human spinal stepping generator. Brain Res. 1995 Jul 3;684(2):230–232. doi: 10.1016/0006-8993(95)00470-b. [DOI] [PubMed] [Google Scholar]
  21. Norman K. E., Pepin A., Ladouceur M., Barbeau H. A treadmill apparatus and harness support for evaluation and rehabilitation of gait. Arch Phys Med Rehabil. 1995 Aug;76(8):772–778. doi: 10.1016/s0003-9993(95)80533-8. [DOI] [PubMed] [Google Scholar]
  22. Palmer E., Downes L., Ashby P. Associated postural adjustments are impaired by a lesion of the cortex. Neurology. 1996 Feb;46(2):471–475. doi: 10.1212/wnl.46.2.471. [DOI] [PubMed] [Google Scholar]
  23. Peat M., Dubo H. I., Winter D. A., Quanbury A. O., Steinke T., Grahame R. Electromyographic temporal analysis of gait: hemiplegic locomotion. Arch Phys Med Rehabil. 1976 Sep;57(9):421–425. [PubMed] [Google Scholar]
  24. Pinter M. M., Dimitrijevic M. R. Gait after spinal cord injury and the central pattern generator for locomotion. Spinal Cord. 1999 Aug;37(8):531–537. doi: 10.1038/sj.sc.3100886. [DOI] [PubMed] [Google Scholar]
  25. Sherrington C. S. Flexion-reflex of the limb, crossed extension-reflex, and reflex stepping and standing. J Physiol. 1910 Apr 26;40(1-2):28–121. doi: 10.1113/jphysiol.1910.sp001362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Smith J. L., Carlson-Kuhta P., Trank T. V. Motor patterns for different forms of walking: cues for the locomotor central pattern generator. Ann N Y Acad Sci. 1998 Nov 16;860:452–455. doi: 10.1111/j.1749-6632.1998.tb09073.x. [DOI] [PubMed] [Google Scholar]
  27. Van de Crommert HW, Mulder T, Duysens J. Neural control of locomotion: sensory control of the central pattern generator and its relation to treadmill training. Gait Posture. 1998 May 1;7(3):251–263. doi: 10.1016/s0966-6362(98)00010-1. [DOI] [PubMed] [Google Scholar]
  28. Visintin M., Barbeau H. The effects of body weight support on the locomotor pattern of spastic paretic patients. Can J Neurol Sci. 1989 Aug;16(3):315–325. doi: 10.1017/s0317167100029152. [DOI] [PubMed] [Google Scholar]
  29. Wernig A., Müller S. Laufband locomotion with body weight support improved walking in persons with severe spinal cord injuries. Paraplegia. 1992 Apr;30(4):229–238. doi: 10.1038/sc.1992.61. [DOI] [PubMed] [Google Scholar]
  30. Wing A. M., Allison S., Jenner J. R. Retaining and retraining balance after stroke. Baillieres Clin Neurol. 1993 Apr;2(1):87–120. [PubMed] [Google Scholar]
  31. Wing A. M., Goodrich S., Virji-Babul N., Jenner J. R., Clapp S. Balance evaluation in hemiparetic stroke patients using lateral forces applied to the hip. Arch Phys Med Rehabil. 1993 Mar;74(3):292–299. [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES