Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1996 Mar;64(3):849–854. doi: 10.1128/iai.64.3.849-854.1996

Gamma interferon and interleukin-10 gene expression in innately susceptible and resistant mice during the early phase of Salmonella typhimurium infection.

S Pie 1, P Matsiota-Bernard 1, P Truffa-Bachi 1, C Nauciel 1
PMCID: PMC173847  PMID: 8641791

Abstract

Previous studies have shown that gamma interferon (IFN-gamma) plays a major role in natural resistance to Salmonella typhimurium during the early phase of infection. To assess whether the level of natural resistance in mice is related to the level of IFN-gamma gene expression, we compared IFN-gamma mRNA levels by means of reverse transcriptase-PCR in the spleens of genetically susceptible Itys (C57BL/6 and BALB/c) and resistant Ityr (CBA and DBA/2) mice during the first 5 days of infection. The mRNA expression of interleukin-10 (IL-10), a cytokine which antagonizes IFN-gamma effects, was also investigated. Mice were infected with 10(3) CFU of the virulent strain S. typhimurium C5, a dose which is lethal within a week for susceptible mice only. IFN-gamma mRNA increased to similar levels in both susceptible and resistant mice, suggesting that susceptibility to S. typhimurium infection is not related to defective IFN-gamma gene expression. In contrast, IL-10 mRNA reached much higher levels in susceptible than in resistant mice. Similar results were found in Ity congenic mice, confirming a link between the presence of the Itys allele and a high level of IL-10 gene expression during infection. High levels of IL-10 mRNA in susceptible mice correlated with high IL-10 serum levels (on day 5), whereas IL-10 was not detectable in the sera of resistant mice. However, administration of neutralizing anti-IL-10 monoclonal antibodies did not modify the course of infection. To evaluate the influence of bacterial multiplication on IL-10 mRNA expression, susceptible mice were infected with an attenuated strain of S. typhimurium. This strain induced a low level of IL-10 mRNA expression. When susceptible mice were immunized with an attenuated strain and challenged with the virulent strain, they inhibited the growth of the challenge bacteria and exhibited a low level of IL-10 mRNA. In contrast, when resistant mice were infected with a high (lethal) dose of the virulent strain, they exhibited a high level of IL-10 mRNA. Taken together, these results indicate that the level of IL-10 gene expression correlates with the level of bacterial multiplication in the organs and that the high level of IL-10 mRNA in Itys mice is a consequence rather than the cause of their susceptibility to S. typhimurium infection.

Full Text

The Full Text of this article is available as a PDF (300.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alonso S., Minty A., Bourlet Y., Buckingham M. Comparison of three actin-coding sequences in the mouse; evolutionary relationships between the actin genes of warm-blooded vertebrates. J Mol Evol. 1986;23(1):11–22. doi: 10.1007/BF02100994. [DOI] [PubMed] [Google Scholar]
  2. Barrera L. F., Kramnik I., Skamene E., Radzioch D. Nitrite production by macrophages derived from BCG-resistant and -susceptible congenic mouse strains in response to IFN-gamma and infection with BCG. Immunology. 1994 Jul;82(3):457–464. [PMC free article] [PubMed] [Google Scholar]
  3. Benbernou N., Nauciel C. Influence of mouse genotype and bacterial virulence in the generation of interferon-gamma-producing cells during the early phase of Salmonella typhimurium infection. Immunology. 1994 Oct;83(2):245–249. [PMC free article] [PubMed] [Google Scholar]
  4. Benjamin W. H., Jr, Hall P., Roberts S. J., Briles D. E. The primary effect of the Ity locus is on the rate of growth of Salmonella typhimurium that are relatively protected from killing. J Immunol. 1990 Apr 15;144(8):3143–3151. [PubMed] [Google Scholar]
  5. Bermudez L. E., Champsi J. Infection with Mycobacterium avium induces production of interleukin-10 (IL-10), and administration of anti-IL-10 antibody is associated with enhanced resistance to infection in mice. Infect Immun. 1993 Jul;61(7):3093–3097. doi: 10.1128/iai.61.7.3093-3097.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bogdan C., Vodovotz Y., Nathan C. Macrophage deactivation by interleukin 10. J Exp Med. 1991 Dec 1;174(6):1549–1555. doi: 10.1084/jem.174.6.1549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bohn E., Heesemann J., Ehlers S., Autenrieth I. B. Early gamma interferon mRNA expression is associated with resistance of mice against Yersinia enterocolitica. Infect Immun. 1994 Jul;62(7):3027–3032. doi: 10.1128/iai.62.7.3027-3032.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Buchmeier N. A., Schreiber R. D. Requirement of endogenous interferon-gamma production for resolution of Listeria monocytogenes infection. Proc Natl Acad Sci U S A. 1985 Nov;82(21):7404–7408. doi: 10.1073/pnas.82.21.7404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. D'Andrea A., Aste-Amezaga M., Valiante N. M., Ma X., Kubin M., Trinchieri G. Interleukin 10 (IL-10) inhibits human lymphocyte interferon gamma-production by suppressing natural killer cell stimulatory factor/IL-12 synthesis in accessory cells. J Exp Med. 1993 Sep 1;178(3):1041–1048. doi: 10.1084/jem.178.3.1041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ehlers S., Mielke M. E., Blankenstein T., Hahn H. Kinetic analysis of cytokine gene expression in the livers of naive and immune mice infected with Listeria monocytogenes. The immediate early phase in innate resistance and acquired immunity. J Immunol. 1992 Nov 1;149(9):3016–3022. [PubMed] [Google Scholar]
  11. Eisenstein T. K., Sultzer B. M. Immunity to Salmonella infection. Adv Exp Med Biol. 1983;162:261–296. doi: 10.1007/978-1-4684-4481-0_26. [DOI] [PubMed] [Google Scholar]
  12. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  13. Gray P. W., Goeddel D. V. Cloning and expression of murine immune interferon cDNA. Proc Natl Acad Sci U S A. 1983 Oct;80(19):5842–5846. doi: 10.1073/pnas.80.19.5842. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hormaeche C. E. Natural resistance to Salmonella typhimurium in different inbred mouse strains. Immunology. 1979 Jun;37(2):311–318. [PMC free article] [PubMed] [Google Scholar]
  15. Iizawa Y., Wagner R. D., Czuprynski C. J. Analysis of cytokine mRNA expression in Listeria-resistant C57BL/6 and Listeria-susceptible A/J mice during Listeria monocytogenes infection. Infect Immun. 1993 Sep;61(9):3739–3744. doi: 10.1128/iai.61.9.3739-3744.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Le Moal M. A., Colle J. H., Galelli A., Truffa-Bachi P. Mouse T-lymphocyte activation by Urtica dioica agglutinin. II.--Original pattern of cell activation and cytokine production induced by UDA. Res Immunol. 1992 Sep;143(7):701–709. doi: 10.1016/0923-2494(92)80008-9. [DOI] [PubMed] [Google Scholar]
  17. Lehmann A. K., Halstensen A., Sørnes S., Røkke O., Waage A. High levels of interleukin 10 in serum are associated with fatality in meningococcal disease. Infect Immun. 1995 Jun;63(6):2109–2112. doi: 10.1128/iai.63.6.2109-2112.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Leung K. Y., Finlay B. B. Intracellular replication is essential for the virulence of Salmonella typhimurium. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11470–11474. doi: 10.1073/pnas.88.24.11470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lissner C. R., Swanson R. N., O'Brien A. D. Genetic control of the innate resistance of mice to Salmonella typhimurium: expression of the Ity gene in peritoneal and splenic macrophages isolated in vitro. J Immunol. 1983 Dec;131(6):3006–3013. [PubMed] [Google Scholar]
  20. Marchant A., Devière J., Byl B., De Groote D., Vincent J. L., Goldman M. Interleukin-10 production during septicaemia. Lancet. 1994 Mar 19;343(8899):707–708. doi: 10.1016/s0140-6736(94)91584-9. [DOI] [PubMed] [Google Scholar]
  21. Mastroeni P., Villarreal-Ramos B., Hormaeche C. E. Adoptive transfer of immunity to oral challenge with virulent salmonellae in innately susceptible BALB/c mice requires both immune serum and T cells. Infect Immun. 1993 Sep;61(9):3981–3984. doi: 10.1128/iai.61.9.3981-3984.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mastroeni P., Villarreal-Ramos B., Hormaeche C. E. Role of T cells, TNF alpha and IFN gamma in recall of immunity to oral challenge with virulent salmonellae in mice vaccinated with live attenuated aro- Salmonella vaccines. Microb Pathog. 1992 Dec;13(6):477–491. doi: 10.1016/0882-4010(92)90014-f. [DOI] [PubMed] [Google Scholar]
  23. Moore K. W., O'Garra A., de Waal Malefyt R., Vieira P., Mosmann T. R. Interleukin-10. Annu Rev Immunol. 1993;11:165–190. doi: 10.1146/annurev.iy.11.040193.001121. [DOI] [PubMed] [Google Scholar]
  24. Moore K. W., Vieira P., Fiorentino D. F., Trounstine M. L., Khan T. A., Mosmann T. R. Homology of cytokine synthesis inhibitory factor (IL-10) to the Epstein-Barr virus gene BCRFI. Science. 1990 Jun 8;248(4960):1230–1234. doi: 10.1126/science.2161559. [DOI] [PubMed] [Google Scholar]
  25. Motta I., Colle J. H., Shidani B., Truffa-Bachi P. Interleukin 2/interleukin 4-independent T helper cell generation during an in vitro antigenic stimulation of mouse spleen cells in the presence of cyclosporin A. Eur J Immunol. 1991 Mar;21(3):551–557. doi: 10.1002/eji.1830210304. [DOI] [PubMed] [Google Scholar]
  26. Muotiala A., Mäkelä P. H. The role of IFN-gamma in murine Salmonella typhimurium infection. Microb Pathog. 1990 Feb;8(2):135–141. doi: 10.1016/0882-4010(90)90077-4. [DOI] [PubMed] [Google Scholar]
  27. Nathan C. F., Murray H. W., Wiebe M. E., Rubin B. Y. Identification of interferon-gamma as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity. J Exp Med. 1983 Sep 1;158(3):670–689. doi: 10.1084/jem.158.3.670. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Nauciel C., Espinasse-Maes F. Role of gamma interferon and tumor necrosis factor alpha in resistance to Salmonella typhimurium infection. Infect Immun. 1992 Feb;60(2):450–454. doi: 10.1128/iai.60.2.450-454.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Nauciel C. Role of CD4+ T cells and T-independent mechanisms in acquired resistance to Salmonella typhimurium infection. J Immunol. 1990 Aug 15;145(4):1265–1269. [PubMed] [Google Scholar]
  30. O'Brien A. D. Influence of host genes on resistance of inbred mice to lethal infection with Salmonella typhimurium. Curr Top Microbiol Immunol. 1986;124:37–48. [PubMed] [Google Scholar]
  31. O'Brien A. D., Metcalf E. S. Control of early Salmonella typhimurium growth in innately Salmonella-resistant mice does not require functional T lymphocytes. J Immunol. 1982 Oct;129(4):1349–1351. [PubMed] [Google Scholar]
  32. Poston R. M., Kurlander R. J. Analysis of the time course of IFN-gamma mRNA and protein production during primary murine listeriosis. The immune phase of bacterial elimination is not temporally linked to IFN production in vivo. J Immunol. 1991 Jun 15;146(12):4333–4337. [PubMed] [Google Scholar]
  33. Potter M., O'Brien A. D., Skamene E., Gros P., Forget A., Kongshavn P. A., Wax J. S. A BALB/c congenic strain of mice that carries a genetic locus (Ityr) controlling resistance to intracellular parasites. Infect Immun. 1983 Jun;40(3):1234–1235. doi: 10.1128/iai.40.3.1234-1235.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Ramarathinam L., Niesel D. W., Klimpel G. R. Ity influences the production of IFN-gamma by murine splenocytes stimulated in vitro with Salmonella typhimurium. J Immunol. 1993 May 1;150(9):3965–3972. [PubMed] [Google Scholar]
  35. Ramarathinam L., Shaban R. A., Niesel D. W., Klimpel G. R. Interferon gamma (IFN-gamma) production by gut-associated lymphoid tissue and spleen following oral Salmonella typhimurium challenge. Microb Pathog. 1991 Nov;11(5):347–356. doi: 10.1016/0882-4010(91)90020-b. [DOI] [PubMed] [Google Scholar]
  36. Reed S. G., Brownell C. E., Russo D. M., Silva J. S., Grabstein K. H., Morrissey P. J. IL-10 mediates susceptibility to Trypanosoma cruzi infection. J Immunol. 1994 Oct 1;153(7):3135–3140. [PubMed] [Google Scholar]
  37. Schafer R., Eisenstein T. K. Natural killer cells mediate protection induced by a Salmonella aroA mutant. Infect Immun. 1992 Mar;60(3):791–797. doi: 10.1128/iai.60.3.791-797.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Skamene E., Pietrangeli C. E. Genetics of the immune response to infectious pathogens. Curr Opin Immunol. 1991 Aug;3(4):511–517. doi: 10.1016/0952-7915(91)90013-q. [DOI] [PubMed] [Google Scholar]
  39. Tripp C. S., Wolf S. F., Unanue E. R. Interleukin 12 and tumor necrosis factor alpha are costimulators of interferon gamma production by natural killer cells in severe combined immunodeficiency mice with listeriosis, and interleukin 10 is a physiologic antagonist. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3725–3729. doi: 10.1073/pnas.90.8.3725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Vidal S. M., Malo D., Vogan K., Skamene E., Gros P. Natural resistance to infection with intracellular parasites: isolation of a candidate for Bcg. Cell. 1993 May 7;73(3):469–485. doi: 10.1016/0092-8674(93)90135-d. [DOI] [PubMed] [Google Scholar]
  41. Wagner R. D., Maroushek N. M., Brown J. F., Czuprynski C. J. Treatment with anti-interleukin-10 monoclonal antibody enhances early resistance to but impairs complete clearance of Listeria monocytogenes infection in mice. Infect Immun. 1994 Jun;62(6):2345–2353. doi: 10.1128/iai.62.6.2345-2353.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Xiong H., Kawamura I., Nishibori T., Mitsuyama M. Cytokine gene expression in mice at an early stage of infection with various strains of Listeria spp. differing in virulence. Infect Immun. 1994 Sep;62(9):3649–3654. doi: 10.1128/iai.62.9.3649-3654.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES