Skip to main content
Thorax logoLink to Thorax
. 2004 Feb;59(2):136–143. doi: 10.1136/thorax.2003.004218

Rapid and efficient clearance of airway tissue granulocytes through transepithelial migration

J Erjefalt 1, L Uller 1, M Malm-Erjefalt 1, C Persson 1
PMCID: PMC1746951  PMID: 14760154

Abstract

Method: Guinea pig tracheobronchial airways where eosinophils are constitutively present in the mucosal tissue were studied. A complex topical stimulus (allergen challenge) was applied and the fate of the eosinophils was determined by selective tracheobronchial lavage and histological examination of the tissue.

Results: Within 10 minutes of the allergen challenge, massive migration of eosinophils into the airway lumen occurred together with a reduction in tissue eosinophil numbers. Cell clearance into the lumen continued at high speed and by 30 and 60 minutes the tissue eosinophilia had been reduced by 63% and 73%, respectively. The marked transepithelial migration (estimated maximal speed 35 000 cells/min x cm2 mucosal surface) took place ubiquitously between epithelial cells without affecting epithelial integrity as assessed by transmission and scanning electron microscopy. Eosinophil apoptosis was not detected but occasional cytolytic eosinophils occurred.

Conclusion: This study shows that luminal entry has a remarkably high capacity as a granulocyte elimination process. The data also suggest that an appropriate stimulus of transepithelial migration may be used therapeutically to increase the resolution of inflammatory conditions of airway tissues.

Full Text

The Full Text of this article is available as a PDF (834.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adachi T., Motojima S., Hirata A., Fukuda T., Kihara N., Kosaku A., Ohtake H., Makino S. Eosinophil apoptosis caused by theophylline, glucocorticoids, and macrolides after stimulation with IL-5. J Allergy Clin Immunol. 1996 Dec;98(6 Pt 2):S207–S215. doi: 10.1016/s0091-6749(96)70068-4. [DOI] [PubMed] [Google Scholar]
  2. Bochner B. S., Lichtenstein L. M. Anaphylaxis. N Engl J Med. 1991 Jun 20;324(25):1785–1790. doi: 10.1056/NEJM199106203242506. [DOI] [PubMed] [Google Scholar]
  3. Bratton D. L., Fadok V. A. "Their's but to do and die": eosinophil longevity in asthma. J Allergy Clin Immunol. 1999 Apr;103(4):555–558. doi: 10.1016/s0091-6749(99)70223-x. [DOI] [PubMed] [Google Scholar]
  4. Carolan E. J., Casale T. B. Neutrophil transepithelial migration is dependent upon epithelial characteristics. Am J Respir Cell Mol Biol. 1996 Aug;15(2):224–231. doi: 10.1165/ajrcmb.15.2.8703478. [DOI] [PubMed] [Google Scholar]
  5. Corry David B., Rishi Kirtee, Kanellis John, Kiss Attila, Song Lz Li-zhen, Xu Jie, Feng Lili, Werb Zena, Kheradmand Farrah. Decreased allergic lung inflammatory cell egression and increased susceptibility to asphyxiation in MMP2-deficiency. Nat Immunol. 2002 Mar 11;3(4):347–353. doi: 10.1038/ni773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Djukanović R., Roche W. R., Wilson J. W., Beasley C. R., Twentyman O. P., Howarth R. H., Holgate S. T. Mucosal inflammation in asthma. Am Rev Respir Dis. 1990 Aug;142(2):434–457. doi: 10.1164/ajrccm/142.2.434. [DOI] [PubMed] [Google Scholar]
  7. Druilhe A., Wallaert B., Tsicopoulos A., Lapa e Silva J. R., Tillie-Leblond I., Tonnel A. B., Pretolani M. Apoptosis, proliferation, and expression of Bcl-2, Fas, and Fas ligand in bronchial biopsies from asthmatics. Am J Respir Cell Mol Biol. 1998 Nov;19(5):747–757. doi: 10.1165/ajrcmb.19.5.3166. [DOI] [PubMed] [Google Scholar]
  8. Erjefält I. A., Wagner Z. G., Strand S. E., Persson C. G. A method for studies of tracheobronchial microvascular permeability to macromolecules. J Pharmacol Methods. 1985 Dec;14(4):275–283. doi: 10.1016/0160-5402(85)90003-8. [DOI] [PubMed] [Google Scholar]
  9. Erjefält I., Greiff L., Alkner U., Persson C. G. Allergen-induced biphasic plasma exudation responses in guinea pig large airways. Am Rev Respir Dis. 1993 Sep;148(3):695–701. doi: 10.1164/ajrccm/148.3.695. [DOI] [PubMed] [Google Scholar]
  10. Erjefält I., Persson C. G. Allergen, bradykinin, and capsaicin increase outward but not inward macromolecular permeability of guinea-pig tracheobronchial mucosa. Clin Exp Allergy. 1991 Mar;21(2):217–224. doi: 10.1111/j.1365-2222.1991.tb00833.x. [DOI] [PubMed] [Google Scholar]
  11. Erjefält J. S., Erjefält I., Sundler F., Persson C. G. In vivo restitution of airway epithelium. Cell Tissue Res. 1995 Aug;281(2):305–316. doi: 10.1007/BF00583399. [DOI] [PubMed] [Google Scholar]
  12. Erjefält J. S., Korsgren M., Nilsson M. C., Sundler F., Persson C. G. Prompt epithelial damage and restitution processes in allergen challenged guinea-pig trachea in vivo. Clin Exp Allergy. 1997 Dec;27(12):1458–1470. doi: 10.1046/j.1365-2222.1997.1200932.x. [DOI] [PubMed] [Google Scholar]
  13. Erjefält J. S., Persson C. G. New aspects of degranulation and fates of airway mucosal eosinophils. Am J Respir Crit Care Med. 2000 Jun;161(6):2074–2085. doi: 10.1164/ajrccm.161.6.9906085. [DOI] [PubMed] [Google Scholar]
  14. Erjefält J. S., Sundler F., Persson C. G. Eosinophils, neutrophils, and venular gaps in the airway mucosa at epithelial removal-restitution. Am J Respir Crit Care Med. 1996 May;153(5):1666–1674. doi: 10.1164/ajrccm.153.5.8630618. [DOI] [PubMed] [Google Scholar]
  15. Frigas E., Gleich G. J. The eosinophil and the pathophysiology of asthma. J Allergy Clin Immunol. 1986 Apr;77(4):527–537. doi: 10.1016/0091-6749(86)90341-6. [DOI] [PubMed] [Google Scholar]
  16. Gavrieli Y., Sherman Y., Ben-Sasson S. A. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol. 1992 Nov;119(3):493–501. doi: 10.1083/jcb.119.3.493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gewirtz A. T., Siber A. M., Madara J. L., McCormick B. A. Orchestration of neutrophil movement by intestinal epithelial cells in response to Salmonella typhimurium can be uncoupled from bacterial internalization. Infect Immun. 1999 Feb;67(2):608–617. doi: 10.1128/iai.67.2.608-617.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Golstein P., Ojcius D. M., Young J. D. Cell death mechanisms and the immune system. Immunol Rev. 1991 Jun;121:29–65. doi: 10.1111/j.1600-065x.1991.tb00822.x. [DOI] [PubMed] [Google Scholar]
  19. Hang L., Frendéus B., Godaly G., Svanborg C. Interleukin-8 receptor knockout mice have subepithelial neutrophil entrapment and renal scarring following acute pyelonephritis. J Infect Dis. 2000 Nov 8;182(6):1738–1748. doi: 10.1086/317599. [DOI] [PubMed] [Google Scholar]
  20. Hansel T. T., Walker C. The migration of eosinophils into the sputum of asthmatics: the role of adhesion molecules. Clin Exp Allergy. 1992 Mar;22(3):345–356. doi: 10.1111/j.1365-2222.1992.tb03096.x. [DOI] [PubMed] [Google Scholar]
  21. Keatings V. M., Barnes P. J. Granulocyte activation markers in induced sputum: comparison between chronic obstructive pulmonary disease, asthma, and normal subjects. Am J Respir Crit Care Med. 1997 Feb;155(2):449–453. doi: 10.1164/ajrccm.155.2.9032177. [DOI] [PubMed] [Google Scholar]
  22. Li D., Wang D., Griffiths-Johnson D. A., Wells T. N., Williams T. J., Jose P. J., Jeffery P. K. Eotaxin protein and gene expression in guinea-pig lungs: constitutive expression and upregulation after allergen challenge. Eur Respir J. 1997 Sep;10(9):1946–1954. doi: 10.1183/09031936.97.10091946. [DOI] [PubMed] [Google Scholar]
  23. McCormick B. A., Parkos C. A., Colgan S. P., Carnes D. K., Madara J. L. Apical secretion of a pathogen-elicited epithelial chemoattractant activity in response to surface colonization of intestinal epithelia by Salmonella typhimurium. J Immunol. 1998 Jan 1;160(1):455–466. [PubMed] [Google Scholar]
  24. Milks L. C., Brontoli M. J., Cramer E. B. Epithelial permeability and the transepithelial migration of human neutrophils. J Cell Biol. 1983 May;96(5):1241–1247. doi: 10.1083/jcb.96.5.1241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Peachman K. K., Lyles D. S., Bass D. A. Mitochondria in eosinophils: functional role in apoptosis but not respiration. Proc Natl Acad Sci U S A. 2001 Feb 13;98(4):1717–1722. doi: 10.1073/pnas.98.4.1717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Persson C. G. Centennial notions of asthma as an eosinophilic, desquamative, exudative, and steroid-sensitive disease. Lancet. 1997 Oct 4;350(9083):1021–1024. doi: 10.1016/s0140-6736(96)02335-5. [DOI] [PubMed] [Google Scholar]
  27. Persson C. G., Erjefält I., Alkner U., Baumgarten C., Greiff L., Gustafsson B., Luts A., Pipkorn U., Sundler F., Svensson C. Plasma exudation as a first line respiratory mucosal defence. Clin Exp Allergy. 1991 Jan;21(1):17–24. doi: 10.1111/j.1365-2222.1991.tb00799.x. [DOI] [PubMed] [Google Scholar]
  28. Persson C. G., Erjefält J. S. Eosinophil lysis and free granules: an in vivo paradigm for cell activation and drug development. Trends Pharmacol Sci. 1997 Apr;18(4):117–123. doi: 10.1016/s0165-6147(97)01042-0. [DOI] [PubMed] [Google Scholar]
  29. Robinson Bruce W. S., Creaney Jenette, Lake Richard, Nowak Anna, Musk A. William, de Klerk Nick, Winzell Pernilla, Hellstrom Karl Erik, Hellstrom Ingegerd. Mesothelin-family proteins and diagnosis of mesothelioma. Lancet. 2003 Nov 15;362(9396):1612–1616. doi: 10.1016/S0140-6736(03)14794-0. [DOI] [PubMed] [Google Scholar]
  30. Sedgwick J. B., Calhoun W. J., Vrtis R. F., Bates M. E., McAllister P. K., Busse W. W. Comparison of airway and blood eosinophil function after in vivo antigen challenge. J Immunol. 1992 Dec 1;149(11):3710–3718. [PubMed] [Google Scholar]
  31. Shi H. Z., Humbles A., Gerard C., Jin Z., Weller P. F. Lymph node trafficking and antigen presentation by endobronchial eosinophils. J Clin Invest. 2000 Apr;105(7):945–953. doi: 10.1172/JCI8945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Simon H. U., Blaser K. Inhibition of programmed eosinophil death: a key pathogenic event for eosinophilia? Immunol Today. 1995 Feb;16(2):53–55. doi: 10.1016/0167-5699(95)80086-7. [DOI] [PubMed] [Google Scholar]
  33. Stern M., Meagher L., Savill J., Haslett C. Apoptosis in human eosinophils. Programmed cell death in the eosinophil leads to phagocytosis by macrophages and is modulated by IL-5. J Immunol. 1992 Jun 1;148(11):3543–3549. [PubMed] [Google Scholar]
  34. Temple R., Allen E., Fordham J., Phipps S., Schneider H. C., Lindauer K., Hayes I., Lockey J., Pollock K., Jupp R. Microarray analysis of eosinophils reveals a number of candidate survival and apoptosis genes. Am J Respir Cell Mol Biol. 2001 Oct;25(4):425–433. doi: 10.1165/ajrcmb.25.4.4456. [DOI] [PubMed] [Google Scholar]
  35. Uller L., Persson C. G., Källström L., Erjefält J. S. Lung tissue eosinophils may be cleared through luminal entry rather than apoptosis: effects of steroid treatment. Am J Respir Crit Care Med. 2001 Nov 15;164(10 Pt 1):1948–1956. doi: 10.1164/ajrccm.164.10.2011135. [DOI] [PubMed] [Google Scholar]
  36. Yamaguchi Y., Suda T., Ohta S., Tominaga K., Miura Y., Kasahara T. Analysis of the survival of mature human eosinophils: interleukin-5 prevents apoptosis in mature human eosinophils. Blood. 1991 Nov 15;78(10):2542–2547. [PubMed] [Google Scholar]
  37. Yousefi S., Green D. R., Blaser K., Simon H. U. Protein-tyrosine phosphorylation regulates apoptosis in human eosinophils and neutrophils. Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):10868–10872. doi: 10.1073/pnas.91.23.10868. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Zhang P., Summer W. R., Bagby G. J., Nelson S. Innate immunity and pulmonary host defense. Immunol Rev. 2000 Feb;173:39–51. doi: 10.1034/j.1600-065x.2000.917306.x. [DOI] [PubMed] [Google Scholar]

Articles from Thorax are provided here courtesy of BMJ Publishing Group

RESOURCES