Abstract
The antigenic phenotype of human villous stromal macrophages (M phi s) from first and third trimester placentas was analyzed using a large number of monoclonal antibodies (MAbs) to monocyte (Mo)/M phi-associated cell membrane determinants. The purpose of this study was to investigate M phi phenotypic heterogeneity to create a database for the correlation of M phi phenotype with specific immunologic functions. The results showed that villous stromal mononuclear cells express many cell surface antigens found on Mo and M phi s and that they are morphologically diverse, ranging in appearance from classic Hofbauer cells to spindle-shaped cells with long cytoplasmic processes. Villous stromal M phi s were the numerically dominant cell type in this structure and exhibited some major phenotypic differences from M phi s in other tissues. Comparison of first- and third-trimester placentas revealed variation in antigen expression with increasing gestational age, in particular of class II major histocompatibility complex (MHC) determinants: HLA-DR and HLA-DP antigen density was low on first-trimester villous M phi s and much higher on third-trimester M phi s while HLA-DQ was undetectable in the first trimester but present on cells in third trimester placentas. The CD1 (T6) antigen, found on Langerhans (LH) cells and cortical thymocytes, was detected on villous M phi s by two thirds of the MAbs directed against different epitopes on this determinant. Furthermore, comparison with similar studies of lymphoid tissues showed that villous M phi s and dendritic cells share the expression of a number of other cell surface antigens. Finally, it was shown that M phi s in first- and third-trimester villi exhibit strong reactivity with MAbs (Leu 3a,b) to the CD4 antigen that serves as the receptor for the human immunodeficiency virus (HIV), suggesting that these cells may be a portal of entry or reservoir for this virus in the fetuses of pregnant, HIV+ women.
Full text
PDF











Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alonso M. C., Navarrete C., Solana R., Torres A., Pena J., Festenstein H. Differential expression of HLA-DR and HLA-DQ antigens on normal cells of the myelomonocytic lineage. Tissue Antigens. 1985 Nov;26(5):310–317. doi: 10.1111/j.1399-0039.1985.tb02229.x. [DOI] [PubMed] [Google Scholar]
- Andreesen R., Bross K. J., Osterholz J., Emmrich F. Human macrophage maturation and heterogeneity: analysis with a newly generated set of monoclonal antibodies to differentiation antigens. Blood. 1986 May;67(5):1257–1264. [PubMed] [Google Scholar]
- Becker S., Johnson C., Halme J., Haskill S. Interleukin-1 production and antigen presentation by normal human peritoneal macrophages. Cell Immunol. 1986 Apr 1;98(2):467–476. doi: 10.1016/0008-8749(86)90305-9. [DOI] [PubMed] [Google Scholar]
- Beller D. I., Springer T. A., Schreiber R. D. Anti-Mac-1 selectively inhibits the mouse and human type three complement receptor. J Exp Med. 1982 Oct 1;156(4):1000–1009. doi: 10.1084/jem.156.4.1000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Braunhut S. J., Blanc W. A., Ramanarayanan M., Marboe C., Mesa-Tejada R. Immunocytochemical localization of lysozyme and alpha-1-antichymotrypsin in the term human placenta: an attempt to characterize the Hofbauer cell. J Histochem Cytochem. 1984 Nov;32(11):1204–1210. doi: 10.1177/32.11.6548486. [DOI] [PubMed] [Google Scholar]
- Buckley P. J., Dickson S. A. Monoclonal antibodies to T-helper/inducer and T-suppressor/cytotoxic lymphocyte subsets recognize antigens on splenic sinusoidal lining cells. Am J Clin Pathol. 1984 Aug;82(2):167–172. doi: 10.1093/ajcp/82.2.167. [DOI] [PubMed] [Google Scholar]
- Buckley P. J., Dickson S. A., Walker W. S. Human splenic sinusoidal lining cells express antigens associated with monocytes, macrophages, endothelial cells, and T lymphocytes. J Immunol. 1985 Apr;134(4):2310–2315. [PubMed] [Google Scholar]
- Buckley P. J., Smith M. R., Braverman M. F., Dickson S. A. Human spleen contains phenotypic subsets of macrophages and dendritic cells that occupy discrete microanatomic locations. Am J Pathol. 1987 Sep;128(3):505–520. [PMC free article] [PubMed] [Google Scholar]
- Bulmer J. N., Johnson P. M. Macrophage populations in the human placenta and amniochorion. Clin Exp Immunol. 1984 Aug;57(2):393–403. [PMC free article] [PubMed] [Google Scholar]
- Chen Y. X., Evans R. L., Pollack M. S., Lanier L. L., Phillips J. H., Rousso C., Warner N. L., Brodsky F. M. Characterization and expression of the HLA-DC antigens defined by anti-Leu 10. Hum Immunol. 1984 Aug;10(4):221–235. doi: 10.1016/0198-8859(84)90088-0. [DOI] [PubMed] [Google Scholar]
- Dana N., Todd R. F., 3rd, Pitt J., Springer T. A., Arnaout M. A. Deficiency of a surface membrane glycoprotein (Mo1) in man. J Clin Invest. 1984 Jan;73(1):153–159. doi: 10.1172/JCI111186. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dimitriu-Bona A., Burmester G. R., Waters S. J., Winchester R. J. Human mononuclear phagocyte differentiation antigens. I. Patterns of antigenic expression on the surface of human monocytes and macrophages defined by monoclonal antibodies. J Immunol. 1983 Jan;130(1):145–152. [PubMed] [Google Scholar]
- Edwards J. A., Durant B. M., Jones D. B., Evans P. R., Smith J. L. Differential expression of HLA class II antigens in fetal human spleen: relationship of HLA-DP, DQ, and DR to immunoglobulin expression. J Immunol. 1986 Jul 15;137(2):490–497. [PubMed] [Google Scholar]
- Edwards J. A., Jones D. B., Evans P. R., Smith J. L. Differential expression of HLA class II antigens on human fetal and adult lymphocytes and macrophages. Immunology. 1985 Jul;55(3):489–500. [PMC free article] [PubMed] [Google Scholar]
- Enders A. C., King B. F. The cytology of Hofbauer cells. Anat Rec. 1970 Jun;167(2):231–236. doi: 10.1002/ar.1091670211. [DOI] [PubMed] [Google Scholar]
- Fernandez-Cruz E., Ulich T., Schreiber R. D. In vivo activity of lymphokine-activated macrophages in host defense against neoplasia. J Immunol. 1985 May;134(5):3489–3496. [PubMed] [Google Scholar]
- Fleit H. B., Wright S. D., Unkeless J. C. Human neutrophil Fc gamma receptor distribution and structure. Proc Natl Acad Sci U S A. 1982 May;79(10):3275–3279. doi: 10.1073/pnas.79.10.3275. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Flynn A., Finke J. H., Loftus M. A. Comparison of interleukin 1 production by adherent cells and tissue pieces from human placenta. Immunopharmacology. 1985 Feb;9(1):19–26. doi: 10.1016/0162-3109(85)90042-6. [DOI] [PubMed] [Google Scholar]
- Fox H. The incidence and significance of Hofbauer cells in the mature human placenta. J Pathol Bacteriol. 1967 Apr;93(2):710–717. doi: 10.1002/path.1700930239. [DOI] [PubMed] [Google Scholar]
- Franklin W. A., Mason D. Y., Pulford K., Falini B., Bliss E., Gatter K. C., Stein H., Clarke L. C., McGee J. O. Immunohistological analysis of human mononuclear phagocytes and dendritic cells by using monoclonal antibodies. Lab Invest. 1986 Mar;54(3):322–335. [PubMed] [Google Scholar]
- Gartner S., Markovits P., Markovitz D. M., Kaplan M. H., Gallo R. C., Popovic M. The role of mononuclear phagocytes in HTLV-III/LAV infection. Science. 1986 Jul 11;233(4760):215–219. doi: 10.1126/science.3014648. [DOI] [PubMed] [Google Scholar]
- Gaudernack G., Bjercke S. Dendritic cells and monocytes as accessory cells in T-cell responses in man. I. Phenotypic analysis of dendritic cells and monocytes. Scand J Immunol. 1985 May;21(5):493–500. doi: 10.1111/j.1365-3083.1985.tb01838.x. [DOI] [PubMed] [Google Scholar]
- Gerdes J., Naiem M., Mason D. Y., Stein H. Human complement (C3b) receptors defined by a mouse monoclonal antibody. Immunology. 1982 Apr;45(4):645–653. [PMC free article] [PubMed] [Google Scholar]
- Glover D. M., Brownstein D., Burchett S., Larsen A., Wilson C. B. Expression of HLA class II antigens and secretion of interleukin-1 by monocytes and macrophages from adults and neonates. Immunology. 1987 Jun;61(2):195–201. [PMC free article] [PubMed] [Google Scholar]
- Gonwa T. A., Frost J. P., Karr R. W. All human monocytes have the capability of expressing HLA-DQ and HLA-DP molecules upon stimulation with interferon-gamma. J Immunol. 1986 Jul 15;137(2):519–524. [PubMed] [Google Scholar]
- Gonwa T. A., Picker L. J., Raff H. V., Goyert S. M., Silver J., Stobo J. D. Antigen-presenting capabilities of human monocytes correlates with their expression of HLA-DS, an Ia determinant distinct from HLA-DR. J Immunol. 1983 Feb;130(2):706–711. [PubMed] [Google Scholar]
- Gordon S., Crocker P. R., Morris L., Lee S. H., Perry V. H., Hume D. A. Localization and function of tissue macrophages. Ciba Found Symp. 1986;118:54–67. doi: 10.1002/9780470720998.ch5. [DOI] [PubMed] [Google Scholar]
- Hancock W. W., Zola H., Atkins R. C. Antigenic heterogeneity of human mononuclear phagocytes: immunohistologic analysis using monoclonal antibodies. Blood. 1983 Dec;62(6):1271–1279. [PubMed] [Google Scholar]
- Hanjan S. N., Kearney J. F., Cooper M. D. A monoclonal antibody (MMA) that identifies a differentiation antigen on human myelomonocytic cells. Clin Immunol Immunopathol. 1982 May;23(2):172–188. doi: 10.1016/0090-1229(82)90106-4. [DOI] [PubMed] [Google Scholar]
- Hibbs J. B., Jr, Chapman H. A., Jr, Weinberg J. B. The macrophage as an antineoplastic surveillance cell: biological perspectives. J Reticuloendothel Soc. 1978 Nov;24(5):549–570. [PubMed] [Google Scholar]
- Hsu S. M., Jaffe E. S. Leu M1 and peanut agglutinin stain the neoplastic cells of Hodgkin's disease. Am J Clin Pathol. 1984 Jul;82(1):29–32. doi: 10.1093/ajcp/82.1.29. [DOI] [PubMed] [Google Scholar]
- Hsu S. M., Raine L., Fanger H. Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem. 1981 Apr;29(4):577–580. doi: 10.1177/29.4.6166661. [DOI] [PubMed] [Google Scholar]
- Kapsenberg M. L., Teunissen M. B., Stiekema F. E., Keizer H. G. Antigen-presenting cell function of dendritic cells and macrophages in proliferative T cell responses to soluble and particulate antigens. Eur J Immunol. 1986 Apr;16(4):345–350. doi: 10.1002/eji.1830160405. [DOI] [PubMed] [Google Scholar]
- Lampson L. A., Levy R. Two populations of Ia-like molecules on a human B cell line. J Immunol. 1980 Jul;125(1):293–299. [PubMed] [Google Scholar]
- Lanier L. L., Arnaout M. A., Schwarting R., Warner N. L., Ross G. D. p150/95, Third member of the LFA-1/CR3 polypeptide family identified by anti-Leu M5 monoclonal antibody. Eur J Immunol. 1985 Jul;15(7):713–718. doi: 10.1002/eji.1830150714. [DOI] [PubMed] [Google Scholar]
- McMichael A. J., Pilch J. R., Galfré G., Mason D. Y., Fabre J. W., Milstein C. A human thymocyte antigen defined by a hybrid myeloma monoclonal antibody. Eur J Immunol. 1979 Mar;9(3):205–210. doi: 10.1002/eji.1830090307. [DOI] [PubMed] [Google Scholar]
- Moskalewski S., Ptak W., Strzyzewska J. Macrophages in mouse placenta: morphologic and functional identification. J Reticuloendothel Soc. 1974 Jul;16(1):9–14. [PubMed] [Google Scholar]
- Murphy G. F., Messadi D., Fonferko E., Hancock W. W. Phenotypic transformation of macrophages to Langerhans cells in the skin. Am J Pathol. 1986 Jun;123(3):401–406. [PMC free article] [PubMed] [Google Scholar]
- Naiem M., Gerdes J., Abdulaziz Z., Stein H., Mason D. Y. Production of a monoclonal antibody reactive with human dendritic reticulum cells and its use in the immunohistological analysis of lymphoid tissue. J Clin Pathol. 1983 Feb;36(2):167–175. doi: 10.1136/jcp.36.2.167. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Phillips J. H., Le A. M., Lanier L. L. Natural killer cells activated in a human mixed lymphocyte response culture identified by expression of Leu-11 and class II histocompatibility antigens. J Exp Med. 1984 Apr 1;159(4):993–1008. doi: 10.1084/jem.159.4.993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Radzun H. J., Parwaresch M. R., Feller A. C., Hansmann M. L. Monocyte/macrophage-specific monoclonal antibody Ki-M1 recognizes interdigitating reticulum cells. Am J Pathol. 1984 Dec;117(3):441–450. [PMC free article] [PubMed] [Google Scholar]
- Raff H. V., Picker L. J., Stobo J. D. Macrophage heterogeneity in man. A subpopulation of HLA-DR-bearing macrophages required for antigen-induced T cell activation also contains stimulators for autologous-reactive T cells. J Exp Med. 1980 Sep 1;152(3):581–593. doi: 10.1084/jem.152.3.581. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ralfkiaer E., Stein H., Plesner T., Hou-Jensen K., Mason D. In situ immunological characterization of Langerhans cells with monoclonal antibodies: comparison with other dendritic cells in skin and lymph nodes. Virchows Arch A Pathol Anat Histopathol. 1984;403(4):401–412. doi: 10.1007/BF00737289. [DOI] [PubMed] [Google Scholar]
- Reinherz E. L., Kung P. C., Goldstein G., Levey R. H., Schlossman S. F. Discrete stages of human intrathymic differentiation: analysis of normal thymocytes and leukemic lymphoblasts of T-cell lineage. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1588–1592. doi: 10.1073/pnas.77.3.1588. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rhodes J., Ivanyi J., Cozens P. Antigen presentation by human monocytes: effects of modifying major histocompatibility complex class II antigen expression and interleukin 1 production by using recombinant interferons and corticosteroids. Eur J Immunol. 1986 Apr;16(4):370–375. doi: 10.1002/eji.1830160410. [DOI] [PubMed] [Google Scholar]
- Rosenberg S. A., Ligler F. S., Ugolini V., Lipsky P. E. A monoclonal antibody that identifies human peripheral blood monocytes recognizes the accessory- cells required for mitogen-induced T lymphocyte proliferation. J Immunol. 1981 Apr;126(4):1473–1477. [PubMed] [Google Scholar]
- Schwab U., Stein H., Gerdes J., Lemke H., Kirchner H., Schaadt M., Diehl V. Production of a monoclonal antibody specific for Hodgkin and Sternberg-Reed cells of Hodgkin's disease and a subset of normal lymphoid cells. Nature. 1982 Sep 2;299(5878):65–67. doi: 10.1038/299065a0. [DOI] [PubMed] [Google Scholar]
- Shen H. H., Talle M. A., Goldstein G., Chess L. Functional subsets of human monocytes defined by monoclonal antibodies: a distinct subset of monocytes contains the cells capable of inducing the autologous mixed lymphocyte culture. J Immunol. 1983 Feb;130(2):698–705. [PubMed] [Google Scholar]
- Stein H., Gerdes J., Schwab U., Lemke H., Mason D. Y., Ziegler A., Schienle W., Diehl V. Identification of Hodgkin and Sternberg-reed cells as a unique cell type derived from a newly-detected small-cell population. Int J Cancer. 1982 Oct 15;30(4):445–459. doi: 10.1002/ijc.2910300411. [DOI] [PubMed] [Google Scholar]
- Stein H., Mason D. Y., Gerdes J., O'Connor N., Wainscoat J., Pallesen G., Gatter K., Falini B., Delsol G., Lemke H. The expression of the Hodgkin's disease associated antigen Ki-1 in reactive and neoplastic lymphoid tissue: evidence that Reed-Sternberg cells and histiocytic malignancies are derived from activated lymphoid cells. Blood. 1985 Oct;66(4):848–858. [PubMed] [Google Scholar]
- Stewart S. J., Fujimoto J., Levy R. Human T lymphocytes and monocytes bear the same Leu-3(T4) antigen. J Immunol. 1986 May 15;136(10):3773–3778. [PubMed] [Google Scholar]
- Sutton L., Gadd M., Mason D. Y., Redman C. W. Cells bearing class II MHC antigens in the human placenta and amniochorion. Immunology. 1986 May;58(1):23–29. [PMC free article] [PubMed] [Google Scholar]
- Sutton L., Mason D. Y., Redman C. W. HLA-DR positive cells in the human placenta. Immunology. 1983 May;49(1):103–112. [PMC free article] [PubMed] [Google Scholar]
- Theaker J. M., Gatter K. C., Heryet A., Evans D. J., McGee J. O. Giant cell myocarditis: evidence for the macrophage origin of the giant cells. J Clin Pathol. 1985 Feb;38(2):160–164. doi: 10.1136/jcp.38.2.160. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Todd R. F., 3rd, Schlossman S. F. Analysis of antigenic determinants on human monocytes and macrophages. Blood. 1982 Apr;59(4):775–786. [PubMed] [Google Scholar]
- Unanue E. R., Allen P. M. Biochemistry and biology of antigen presentation by macrophages. Cell Immunol. 1986 Apr 15;99(1):3–6. doi: 10.1016/0008-8749(86)90208-x. [DOI] [PubMed] [Google Scholar]
- Unanue E. R., Beller D. I., Lu C. Y., Allen P. M. Antigen presentation: comments on its regulation and mechanism. J Immunol. 1984 Jan;132(1):1–5. [PubMed] [Google Scholar]
- Uren S., Boyle W. Isolation of macrophages from human placenta. J Immunol Methods. 1985 Apr 8;78(1):25–34. doi: 10.1016/0022-1759(85)90326-6. [DOI] [PubMed] [Google Scholar]
- Van Voorhis W. C., Witmer M. D., Steinman R. M. The phenotype of dendritic cells and macrophages. Fed Proc. 1983 Nov;42(14):3114–3118. [PubMed] [Google Scholar]
- Wilson C. B., Haas J. E., Weaver W. M. Isolation, purification and characteristics of mononuclear phagocytes from human placentas. J Immunol Methods. 1983 Feb 11;56(3):305–317. doi: 10.1016/s0022-1759(83)80020-9. [DOI] [PubMed] [Google Scholar]
- Wilson C. B., Westall J. Activation of neonatal and adult human macrophages by alpha, beta, and gamma interferons. Infect Immun. 1985 Aug;49(2):351–356. doi: 10.1128/iai.49.2.351-356.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wood G. S., Turner R. R., Shiurba R. A., Eng L., Warnke R. A. Human dendritic cells and macrophages. In situ immunophenotypic definition of subsets that exhibit specific morphologic and microenvironmental characteristics. Am J Pathol. 1985 Apr;119(1):73–82. [PMC free article] [PubMed] [Google Scholar]
- Wood G. S., Warner N. L., Warnke R. A. Anti-Leu-3/T4 antibodies react with cells of monocyte/macrophage and Langerhans lineage. J Immunol. 1983 Jul;131(1):212–216. [PubMed] [Google Scholar]
- Wood G. S., Warnke R. Suppression of endogenous avidin-binding activity in tissues and its relevance to biotin-avidin detection systems. J Histochem Cytochem. 1981 Oct;29(10):1196–1204. doi: 10.1177/29.10.7028859. [DOI] [PubMed] [Google Scholar]
- Wood G. W., King C. R., Jr Trapping antigen-antibody complexes within the human placenta. Cell Immunol. 1982 May 15;69(2):347–362. doi: 10.1016/0008-8749(82)90077-6. [DOI] [PubMed] [Google Scholar]
- Wood G., Reynard J., Krishnan E., Racela L. Immunobiology of the human placenta. I. IgGFc receptors in trophoblastic villi. Cell Immunol. 1978 Jan;35(1):191–204. doi: 10.1016/0008-8749(78)90139-9. [DOI] [PubMed] [Google Scholar]
- Wood G., Reynard J., Krishnan E., Racela L. Immunobiology of the human placenta. II. Localization of macrophages, in vivo bound IgG and C3. Cell Immunol. 1978 Jan;35(1):205–216. doi: 10.1016/0008-8749(78)90140-5. [DOI] [PubMed] [Google Scholar]
- Wright S. D., Rao P. E., Van Voorhis W. C., Craigmyle L. S., Iida K., Talle M. A., Westberg E. F., Goldstein G., Silverstein S. C. Identification of the C3bi receptor of human monocytes and macrophages by using monoclonal antibodies. Proc Natl Acad Sci U S A. 1983 Sep;80(18):5699–5703. doi: 10.1073/pnas.80.18.5699. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yagel S., Hurwitz A., Rosenn B., Keizer N. Progesterone enhancement of prostaglandin E2 production by fetal placental macrophages. Am J Reprod Immunol Microbiol. 1987 Jun;14(2):45–48. doi: 10.1111/j.1600-0897.1987.tb00116.x. [DOI] [PubMed] [Google Scholar]
- Zwadlo G., Bröcker E. B., von Bassewitz D. B., Feige U., Sorg C. A monoclonal antibody to a differentiation antigen present on mature human macrophages and absent from monocytes. J Immunol. 1985 Mar;134(3):1487–1492. [PubMed] [Google Scholar]
- van den Oord J. J., de Wolf-Peeters C., Desmet V. J. The paracortical area in reactive lymph nodes demonstrating sinushistiocytosis. An enzyme- and immunohistochemical study. Virchows Arch B Cell Pathol Incl Mol Pathol. 1985;48(1):77–85. doi: 10.1007/BF02890117. [DOI] [PubMed] [Google Scholar]