Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1994 Jan;144(1):41–50.

Acute cytomegalovirus infection induces a subendothelial inflammation (endothelialitis) in the allograft vascular wall. A possible linkage with enhanced allograft arteriosclerosis.

P Koskinen 1, K Lemström 1, C Bruggeman 1, I Lautenschlager 1, P Häyry 1
PMCID: PMC1887122  PMID: 8291611

Abstract

Clinical and experimental studies have established the accelerating role of cytomegalovirus (CMV) infection on cardiac allograft arteriosclerosis, ie, chronic rejection. We have investigated the mechanisms behind the interaction between CMV infection and chronic rejection. In the first part of the study, 762 endomyocardial biopsy specimens obtained from 47 heart allograft recipients were analyzed. Of these, 28 patients developed CMV infection during the first postoperative year. In 24 of 28 CMV patients, mononuclear inflammatory cells (endothelialitis) were seen in the subendothelium of small intramyocardial arterioles. In CMV-free recipients, only five of 19 had any subendothelial inflammation in the vascular structures P < 0.0001 when compared with CMV patients). The subendothelial inflammation demonstrated an intensive peak at the onset of CMV infection, subsiding slowly thereafter. Morphologically, the inflammatory cells in the subendothelium were small lymphocytes. Only few activated pyroninophilic lymphocytes were seen. Immunohistochemistry revealed that the lymphocytes were mostly T cells (UCHL1+). In the second part of the study, we investigated if a similar endothelialitis could be induced experimentally in allografted rats. We performed rat aortic allografts from the DA (AG-B4, RT1a) donors to the WF (AG-B2, RT1v) recipients and infected the recipients with 10(5) plaque-forming units of rat CMV Maastricht strain 1 day after transplantation. In rat CMV-infected aortic allografts, the frequency of subendothelial leukocyte common antigen (LCA, OX1) positive leukocytes, 1.7 +/- 0.1 (SEM) point score units, was significantly higher when compared to noninfected allografts, 0.8 +/- 0.1 point score units (P < 0.05), and they were most prominent in the intimal space during and following acute infection. During subsequent weeks, the LCA-positive leukocytes were replaced by alpha-actin-positive smooth muscle cells. Instead, most of the cells in intima of CMV-free grafted rats stained positively to alpha-actin from the beginning and were smooth muscle cells. Practically no leukocytes were seen. In rat CMV-infected aortic allografts most subendothelial inflammatory cells represented T cells (W3/25+) and cells of the monocyte/macrophage lineage (OX42+). In conclusion, acute CMV infection is associated with an subendothelial inflammation (endothelialitis) of allograft vascular structures both in human and in rat. Nonactivated T lymphocytes and monocytes predominate the inflammatory lesion in the subendothelium. The results suggest that the virus-linked vascular wall inflammation may play a role in the immune injury toward allograft vascular structures, particularly to endothelium, and thus contribute to allograft arteriosclerosis.

Full text

PDF
41

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beck S., Barrell B. G. Human cytomegalovirus encodes a glycoprotein homologous to MHC class-I antigens. Nature. 1988 Jan 21;331(6153):269–272. doi: 10.1038/331269a0. [DOI] [PubMed] [Google Scholar]
  2. Billingham M. E. Cardiac transplant atherosclerosis. Transplant Proc. 1987 Aug;19(4 Suppl 5):19–25. [PubMed] [Google Scholar]
  3. Billingham M. E., Cary N. R., Hammond M. E., Kemnitz J., Marboe C., McCallister H. A., Snovar D. C., Winters G. L., Zerbe A. A working formulation for the standardization of nomenclature in the diagnosis of heart and lung rejection: Heart Rejection Study Group. The International Society for Heart Transplantation. J Heart Transplant. 1990 Nov-Dec;9(6):587–593. [PubMed] [Google Scholar]
  4. Billingham M. E. Graft coronary disease: the lesions and the patients. Transplant Proc. 1989 Aug;21(4):3665–3666. [PubMed] [Google Scholar]
  5. Bruggeman C. A., Debie W. M., Grauls G., van Boven C. P. Cytomegalovirus infection of rat endothelial cells in vitro. Arch Virol. 1986;87(3-4):265–272. doi: 10.1007/BF01315304. [DOI] [PubMed] [Google Scholar]
  6. Fujinami R. S., Nelson J. A., Walker L., Oldstone M. B. Sequence homology and immunologic cross-reactivity of human cytomegalovirus with HLA-DR beta chain: a means for graft rejection and immunosuppression. J Virol. 1988 Jan;62(1):100–105. doi: 10.1128/jvi.62.1.100-105.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gao S. Z., Alderman E. L., Schroeder J. S., Silverman J. F., Hunt S. A. Accelerated coronary vascular disease in the heart transplant patient: coronary arteriographic findings. J Am Coll Cardiol. 1988 Aug;12(2):334–340. doi: 10.1016/0735-1097(88)90402-0. [DOI] [PubMed] [Google Scholar]
  8. Grattan M. T., Moreno-Cabral C. E., Starnes V. A., Oyer P. E., Stinson E. B., Shumway N. E. Cytomegalovirus infection is associated with cardiac allograft rejection and atherosclerosis. JAMA. 1989 Jun 23;261(24):3561–3566. [PubMed] [Google Scholar]
  9. Hajjar D. P. Warner-Lambert/Parke-Davis Award Lecture. Viral pathogenesis of atherosclerosis. Impact of molecular mimicry and viral genes. Am J Pathol. 1991 Dec;139(6):1195–1211. [PMC free article] [PubMed] [Google Scholar]
  10. Hendrix M. G., Daemen M., Bruggeman C. A. Cytomegalovirus nucleic acid distribution within the human vascular tree. Am J Pathol. 1991 Mar;138(3):563–567. [PMC free article] [PubMed] [Google Scholar]
  11. Koskinen P. K., Krogerus L. A., Nieminen M. S., Mattila S. P., Häyry P. J., Lautenschlager I. T. Quantitation of cytomegalovirus infection-associated histologic findings in endomyocardial biopsies of heart allografts. J Heart Lung Transplant. 1993 May-Jun;12(3):343–354. [PubMed] [Google Scholar]
  12. Lemström K. B., Bruning J. H., Bruggeman C. A., Lautenschlager I. T., Häyry P. J. Cytomegalovirus infection enhances smooth muscle cell proliferation and intimal thickening of rat aortic allografts. J Clin Invest. 1993 Aug;92(2):549–558. doi: 10.1172/JCI116622. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Loebe M., Schüler S., Zais O., Warnecke H., Fleck E., Hetzer R. Role of cytomegalovirus infection in the development of coronary artery disease in the transplanted heart. J Heart Transplant. 1990 Nov-Dec;9(6):707–711. [PubMed] [Google Scholar]
  14. McDonald K., Rector T. S., Braulin E. A., Kubo S. H., Olivari M. T. Association of coronary artery disease in cardiac transplant recipients with cytomegalovirus infection. Am J Cardiol. 1989 Aug 1;64(5):359–362. doi: 10.1016/0002-9149(89)90535-3. [DOI] [PubMed] [Google Scholar]
  15. Melnick J. L., Adam E., DeBakey M. E. Possible role of cytomegalovirus in atherogenesis. JAMA. 1990 Apr 25;263(16):2204–2207. [PubMed] [Google Scholar]
  16. Mennander A., Tiisala S., Halttunen J., Yilmaz S., Paavonen T., Häyry P. Chronic rejection in rat aortic allografts. An experimental model for transplant arteriosclerosis. Arterioscler Thromb. 1991 May-Jun;11(3):671–680. doi: 10.1161/01.atv.11.3.671. [DOI] [PubMed] [Google Scholar]
  17. Ross R. The pathogenesis of atherosclerosis--an update. N Engl J Med. 1986 Feb 20;314(8):488–500. doi: 10.1056/NEJM198602203140806. [DOI] [PubMed] [Google Scholar]
  18. Smiley M. L., Mar E. C., Huang E. S. Cytomegalovirus infection and viral-induced transformation of human endothelial cells. J Med Virol. 1988 Jun;25(2):213–226. doi: 10.1002/jmv.1890250212. [DOI] [PubMed] [Google Scholar]
  19. Tumilowicz J. J., Gawlik M. E., Powell B. B., Trentin J. J. Replication of cytomegalovirus in human arterial smooth muscle cells. J Virol. 1985 Dec;56(3):839–845. doi: 10.1128/jvi.56.3.839-845.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ustinov J. A., Loginov R. J., Bruggeman C. A., van der Meide P. H., Häyry P. J., Lautenschlager I. T. Cytomegalovirus induces class II expression in rat heart endothelial cells. J Heart Lung Transplant. 1993 Jul-Aug;12(4):644–651. [PubMed] [Google Scholar]
  21. Waldman W. J., Adams P. W., Orosz C. G., Sedmak D. D. T lymphocyte activation by cytomegalovirus-infected, allogeneic cultured human endothelial cells. Transplantation. 1992 Nov;54(5):887–896. doi: 10.1097/00007890-199211000-00024. [DOI] [PubMed] [Google Scholar]
  22. Wentworth B. B., French L. Plaque assay of cytomegalovirus strains of human origin. Proc Soc Exp Biol Med. 1970 Nov;135(2):253–258. doi: 10.3181/00379727-135-35031. [DOI] [PubMed] [Google Scholar]
  23. van der Bij W., Torensma R., van Son W. J., Anema J., Schirm J., Tegzess A. M., The T. H. Rapid immunodiagnosis of active cytomegalovirus infection by monoclonal antibody staining of blood leucocytes. J Med Virol. 1988 Jun;25(2):179–188. doi: 10.1002/jmv.1890250208. [DOI] [PubMed] [Google Scholar]
  24. von Willebrand E., Pettersson E., Ahonen J., Häyry P. CMV infection, class II antigen expression, and human kidney allograft rejection. Transplantation. 1986 Oct;42(4):364–367. doi: 10.1097/00007890-198610000-00006. [DOI] [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES