Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1992 Jan;105(1):238–244. doi: 10.1111/j.1476-5381.1992.tb14240.x

Adenosine receptors in post-mortem human brain.

S James 1, J H Xuereb 1, R Askalan 1, P J Richardson 1
PMCID: PMC1908630  PMID: 1596687

Abstract

1. Adenosine A2-like binding sites were characterized in post-mortem human brain membranes by examining several compounds for their ability to displace [3H]-CGS 21680 (2[p-(2 carboxyethyl)-phenethylamino]-5'-N-ethylcarboxamido adenosine) binding. 2. Two A2-like binding sites were identified in the striatum. 3. The more abundant striatal site was similar to the A2a receptor previously described in rat striatum, both in its pharmacological profile and striatal localization. 4. The less abundant striatal site had a pharmacological profile similar to that of the binding site characterized in the other brain regions examined. This was intermediate in character between A1 and A2 and may represent another adenosine receptor subtype. 5. The co-purification of [3H]-CGS 21680 binding during immunoisolation of human striatal cholinergic membranes was used to assess the possible cholinergic localization of A2-like binding sites in the human striatum. Only the more abundant striatal site co-purified with cholinergic membranes. This suggests that this A2a-like site is present on cholinergic neurones in the human striatum.

Full text

PDF
238

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brown S. J., James S., Reddington M., Richardson P. J. Both A1 and A2a purine receptors regulate striatal acetylcholine release. J Neurochem. 1990 Jul;55(1):31–38. doi: 10.1111/j.1471-4159.1990.tb08817.x. [DOI] [PubMed] [Google Scholar]
  2. Bruns R. F., Lu G. H., Pugsley T. A. Characterization of the A2 adenosine receptor labeled by [3H]NECA in rat striatal membranes. Mol Pharmacol. 1986 Apr;29(4):331–346. [PubMed] [Google Scholar]
  3. Daly J. W., Bruns R. F., Snyder S. H. Adenosine receptors in the central nervous system: relationship to the central actions of methylxanthines. Life Sci. 1981 May 11;28(19):2083–2097. doi: 10.1016/0024-3205(81)90614-7. [DOI] [PubMed] [Google Scholar]
  4. Daly J. W., Butts-Lamb P., Padgett W. Subclasses of adenosine receptors in the central nervous system: interaction with caffeine and related methylxanthines. Cell Mol Neurobiol. 1983 Mar;3(1):69–80. doi: 10.1007/BF00734999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Derrington E. A., Masco D., Whittaker V. P. Confirmation of the cholinergic specificity of the Chol-1 gangliosides in mammalian brain using affinity-purified antisera and lesions affecting the cholinergic input to the hippocampus. J Neurochem. 1989 Dec;53(6):1686–1692. doi: 10.1111/j.1471-4159.1989.tb09231.x. [DOI] [PubMed] [Google Scholar]
  6. Dodd P. R., Watson W. E., Johnston G. A. Adenosine receptors in post-mortem human cerebral cortex and the effect of carbamazepine. Clin Exp Pharmacol Physiol. 1986 Oct;13(10):711–722. doi: 10.1111/j.1440-1681.1986.tb02412.x. [DOI] [PubMed] [Google Scholar]
  7. Dunwiddie T. V. The physiological role of adenosine in the central nervous system. Int Rev Neurobiol. 1985;27:63–139. doi: 10.1016/s0074-7742(08)60556-5. [DOI] [PubMed] [Google Scholar]
  8. ELLMAN G. L., COURTNEY K. D., ANDRES V., Jr, FEATHER-STONE R. M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961 Jul;7:88–95. doi: 10.1016/0006-2952(61)90145-9. [DOI] [PubMed] [Google Scholar]
  9. Fastbom J., Pazos A., Palacios J. M. The distribution of adenosine A1 receptors and 5'-nucleotidase in the brain of some commonly used experimental animals. Neuroscience. 1987 Sep;22(3):813–826. doi: 10.1016/0306-4522(87)92961-7. [DOI] [PubMed] [Google Scholar]
  10. Ferretti P., Borroni E. Putative cholinergic-specific gangliosides in guinea pig forebrain. J Neurochem. 1986 Jun;46(6):1888–1894. doi: 10.1111/j.1471-4159.1986.tb08509.x. [DOI] [PubMed] [Google Scholar]
  11. Fredholm B. B., Dunwiddie T. V. How does adenosine inhibit transmitter release? Trends Pharmacol Sci. 1988 Apr;9(4):130–134. doi: 10.1016/0165-6147(88)90194-0. [DOI] [PubMed] [Google Scholar]
  12. Goodman R. R., Synder S. H. Autoradiographic localization of adenosine receptors in rat brain using [3H]cyclohexyladenosine. J Neurosci. 1982 Sep;2(9):1230–1241. doi: 10.1523/JNEUROSCI.02-09-01230.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hardy J. A., Dodd P. R., Oakley A. E., Perry R. H., Edwardson J. A., Kidd A. M. Metabolically active synaptosomes can be prepared from frozen rat and human brain. J Neurochem. 1983 Mar;40(3):608–614. doi: 10.1111/j.1471-4159.1983.tb08024.x. [DOI] [PubMed] [Google Scholar]
  14. Jarvis M. F., Schulz R., Hutchison A. J., Do U. H., Sills M. A., Williams M. [3H]CGS 21680, a selective A2 adenosine receptor agonist directly labels A2 receptors in rat brain. J Pharmacol Exp Ther. 1989 Dec;251(3):888–893. [PubMed] [Google Scholar]
  15. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  16. Londos C., Wolff J. Two distinct adenosine-sensitive sites on adenylate cyclase. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5482–5486. doi: 10.1073/pnas.74.12.5482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lupica C. R., Cass W. A., Zahniser N. R., Dunwiddie T. V. Effects of the selective adenosine A2 receptor agonist CGS 21680 on in vitro electrophysiology, cAMP formation and dopamine release in rat hippocampus and striatum. J Pharmacol Exp Ther. 1990 Mar;252(3):1134–1141. [PubMed] [Google Scholar]
  18. Martinez-Mir M. I., Probst A., Palacios J. M. Adenosine A2 receptors: selective localization in the human basal ganglia and alterations with disease. Neuroscience. 1991;42(3):697–706. doi: 10.1016/0306-4522(91)90038-p. [DOI] [PubMed] [Google Scholar]
  19. Nanoff C., Jacobson K. A., Stiles G. L. The A2 adenosine receptor: guanine nucleotide modulation of agonist binding is enhanced by proteolysis. Mol Pharmacol. 1991 Feb;39(2):130–135. [PMC free article] [PubMed] [Google Scholar]
  20. Newby A. C., Luzio J. P., Hales C. N. The properties and extracellular location of 5'-nucleotidase of the rat fat-cell plasma membrane. Biochem J. 1975 Mar;146(3):625–633. doi: 10.1042/bj1460625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Parkinson F. E., Fredholm B. B. Autoradiographic evidence for G-protein coupled A2-receptors in rat neostriatum using [3H]-CGS 21680 as a ligand. Naunyn Schmiedebergs Arch Pharmacol. 1990 Jul;342(1):85–89. doi: 10.1007/BF00178977. [DOI] [PubMed] [Google Scholar]
  22. Petcoff D. W., Cooper D. M. Adenosine receptor agonists inhibit inositol phosphate accumulation in rat striatal slices. Eur J Pharmacol. 1987 Jun 4;137(2-3):269–271. doi: 10.1016/0014-2999(87)90234-2. [DOI] [PubMed] [Google Scholar]
  23. Prémont J., Perez M., Blanc G., Tassin J. P., Thierry A. M., Hervé D., Bockaert J. Adenosine-sensitive adenylate cyclase in rat brain homogenates: kinetic characteristics, specificity, topographical, subcellular and cellular distribution. Mol Pharmacol. 1979 Nov;16(3):790–804. [PubMed] [Google Scholar]
  24. Reynaud D., Gharib A., Lagarde M., Sarda N. Characterization of A-2 receptors in postmortem human pineal gland. J Neurochem. 1990 Oct;55(4):1316–1321. doi: 10.1111/j.1471-4159.1990.tb03141.x. [DOI] [PubMed] [Google Scholar]
  25. Richardson P. J., Brown S. J., Bailyes E. M., Luzio J. P. Ectoenzymes control adenosine modulation of immunoisolated cholinergic synapses. Nature. 1987 May 21;327(6119):232–234. doi: 10.1038/327232a0. [DOI] [PubMed] [Google Scholar]
  26. Richardson P. J. Choline uptake and metabolism in affinity-purified cholinergic nerve terminals from rat brain. J Neurochem. 1986 Apr;46(4):1251–1255. doi: 10.1111/j.1471-4159.1986.tb00646.x. [DOI] [PubMed] [Google Scholar]
  27. Richardson P. J., Siddle K., Luzio J. P. Immunoaffinity purification of intact, metabolically active, cholinergic nerve terminals from mammalian brain. Biochem J. 1984 Apr 15;219(2):647–654. doi: 10.1042/bj2190647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Richardson P. J., Walker J. H., Jones R. T., Whittaker V. P. Identification of a cholinergic-specific antigen Chol-1 as a ganglioside. J Neurochem. 1982 Jun;38(6):1605–1614. doi: 10.1111/j.1471-4159.1982.tb06640.x. [DOI] [PubMed] [Google Scholar]
  29. Sarges R., Howard H. R., Browne R. G., Lebel L. A., Seymour P. A., Koe B. K. 4-Amino[1,2,4]triazolo[4,3-a]quinoxalines. A novel class of potent adenosine receptor antagonists and potential rapid-onset antidepressants. J Med Chem. 1990 Aug;33(8):2240–2254. doi: 10.1021/jm00170a031. [DOI] [PubMed] [Google Scholar]
  30. van Calker D., Müller M., Hamprecht B. Adenosine regulates via two different types of receptors, the accumulation of cyclic AMP in cultured brain cells. J Neurochem. 1979 Nov;33(5):999–1005. doi: 10.1111/j.1471-4159.1979.tb05236.x. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES