Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Feb;71(2):1272–1280. doi: 10.1128/jvi.71.2.1272-1280.1997

Investigation of the dynamics of the spread of human immunodeficiency virus to brain and other tissues by evolutionary analysis of sequences from the p17gag and env genes.

E S Hughes 1, J E Bell 1, P Simmonds 1
PMCID: PMC191182  PMID: 8995651

Abstract

The time of spread of human immunodeficiency virus type 1 (HIV-1) from lymphoid to nonlymphoid tissues in the course of infection was investigated by sequence comparisons of variants infecting a range of lymphoid and nonlymphoid tissues from three individuals with AIDS in the pl7gag gene and regions flanking the V1/V2 hypervariable regions. Phylogenetic analysis in both regions revealed several lineages in each individual that contained sequences from both lymphoid and nonlymphoid tissues such as the brain. This observation contrasts strongly with the previously described organ-specific sequences in the V3 region in this study population and other investigations. Although individual pairwise comparisons of relatively short sequences such as p17gag are subject to considerable stochastic error, we found that the diversity of gag sequences in variants from lymphoid tissue was consistently lower than that found among variants amplified from the brain. By estimating mean synonymous pairwise distances in the p17gag region, we were able to make an approximate calculation of the ages of populations in different tissues. Those from lymphoid tissue ranged from 2.65 to 5.6 years in the three study subjects, compared with 4.1 to 6.2 years for variants in the brain. Indeed, variants infecting the brain were no more closely related to each other than they were to variants infecting other tissues in the body. In two of the three individuals, these times of divergence indicate that infection of the brain may have occurred as an early event in the progression to disease, preceding the onset of AIDS by several years. This study is the first in which it was possible to estimate times of diversification in different tissues in vivo and is of importance in understanding the dynamics of the spread of HIV-1 into nonlymphoid tissues and its possible adaptation for replication in different cell types.

Full Text

The Full Text of this article is available as a PDF (236.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bednarik D. P., Folks T. M. Mechanisms of HIV-1 latency. AIDS. 1992 Jan;6(1):3–16. doi: 10.1097/00002030-199201000-00001. [DOI] [PubMed] [Google Scholar]
  2. Carrillo A., Ratner L. Cooperative effects of the human immunodeficiency virus type 1 envelope variable loops V1 and V3 in mediating infectivity for T cells. J Virol. 1996 Feb;70(2):1310–1316. doi: 10.1128/jvi.70.2.1310-1316.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Carrillo A., Ratner L. Human immunodeficiency virus type 1 tropism for T-lymphoid cell lines: role of the V3 loop and C4 envelope determinants. J Virol. 1996 Feb;70(2):1301–1309. doi: 10.1128/jvi.70.2.1301-1309.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chesebro B., Wehrly K., Nishio J., Perryman S. Macrophage-tropic human immunodeficiency virus isolates from different patients exhibit unusual V3 envelope sequence homogeneity in comparison with T-cell-tropic isolates: definition of critical amino acids involved in cell tropism. J Virol. 1992 Nov;66(11):6547–6554. doi: 10.1128/jvi.66.11.6547-6554.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Coffin J. M. Structure, replication, and recombination of retrovirus genomes: some unifying hypotheses. J Gen Virol. 1979 Jan;42(1):1–26. doi: 10.1099/0022-1317-42-1-1. [DOI] [PubMed] [Google Scholar]
  6. Di Stefano M., Wilt S., Gray F., Dubois-Dalcq M., Chiodi F. HIV type 1 V3 sequences and the development of dementia during AIDS. AIDS Res Hum Retroviruses. 1996 Apr 10;12(6):471–476. doi: 10.1089/aid.1996.12.471. [DOI] [PubMed] [Google Scholar]
  7. Donaldson Y. K., Bell J. E., Holmes E. C., Hughes E. S., Brown H. K., Simmonds P. In vivo distribution and cytopathology of variants of human immunodeficiency virus type 1 showing restricted sequence variability in the V3 loop. J Virol. 1994 Sep;68(9):5991–6005. doi: 10.1128/jvi.68.9.5991-6005.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Donaldson Y. K., Bell J. E., Ironside J. W., Brettle R. P., Robertson J. R., Busuttil A., Simmonds P. Redistribution of HIV outside the lymphoid system with onset of AIDS. Lancet. 1994 Feb 12;343(8894):383–385. doi: 10.1016/s0140-6736(94)91222-x. [DOI] [PubMed] [Google Scholar]
  9. Epstein L. G., Kuiken C., Blumberg B. M., Hartman S., Sharer L. R., Clement M., Goudsmit J. HIV-1 V3 domain variation in brain and spleen of children with AIDS: tissue-specific evolution within host-determined quasispecies. Virology. 1991 Feb;180(2):583–590. doi: 10.1016/0042-6822(91)90072-j. [DOI] [PubMed] [Google Scholar]
  10. Fauci A. S. Immunopathogenesis of HIV infection. J Acquir Immune Defic Syndr. 1993 Jun;6(6):655–662. [PubMed] [Google Scholar]
  11. Gojobori T., Moriyama E. N., Kimura M. Molecular clock of viral evolution, and the neutral theory. Proc Natl Acad Sci U S A. 1990 Dec;87(24):10015–10018. doi: 10.1073/pnas.87.24.10015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ho D. D., Neumann A. U., Perelson A. S., Chen W., Leonard J. M., Markowitz M. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature. 1995 Jan 12;373(6510):123–126. doi: 10.1038/373123a0. [DOI] [PubMed] [Google Scholar]
  13. Holmes E. C., Zhang L. Q., Robertson P., Cleland A., Harvey E., Simmonds P., Leigh Brown A. J. The molecular epidemiology of human immunodeficiency virus type 1 in Edinburgh. J Infect Dis. 1995 Jan;171(1):45–53. doi: 10.1093/infdis/171.1.45. [DOI] [PubMed] [Google Scholar]
  14. Holmes E. C., Zhang L. Q., Simmonds P., Ludlam C. A., Brown A. J. Convergent and divergent sequence evolution in the surface envelope glycoprotein of human immunodeficiency virus type 1 within a single infected patient. Proc Natl Acad Sci U S A. 1992 Jun 1;89(11):4835–4839. doi: 10.1073/pnas.89.11.4835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Holmes E. C., Zhang L. Q., Simmonds P., Rogers A. S., Brown A. J. Molecular investigation of human immunodeficiency virus (HIV) infection in a patient of an HIV-infected surgeon. J Infect Dis. 1993 Jun;167(6):1411–1414. doi: 10.1093/infdis/167.6.1411. [DOI] [PubMed] [Google Scholar]
  16. Hwang S. S., Boyle T. J., Lyerly H. K., Cullen B. R. Identification of the envelope V3 loop as the primary determinant of cell tropism in HIV-1. Science. 1991 Jul 5;253(5015):71–74. doi: 10.1126/science.1905842. [DOI] [PubMed] [Google Scholar]
  17. Kasper P., Kaiser R., Oldenburg J., Brackmann H. H., Matz B., Schneweis K. E. Parallel evolution in the V3 region of HIV type 1 after infection of hemophiliacs from a homogeneous source. AIDS Res Hum Retroviruses. 1994 Dec;10(12):1669–1678. doi: 10.1089/aid.1994.10.1669. [DOI] [PubMed] [Google Scholar]
  18. Kasper P., Simmonds P., Schneweis K. E., Kaiser R., Matz B., Oldenburg J., Brackmann H. H., Holmes E. C. The genetic diversification of the HIV type 1 gag p17 gene in patients infected from a common source. AIDS Res Hum Retroviruses. 1995 Oct;11(10):1197–1201. doi: 10.1089/aid.1995.11.1197. [DOI] [PubMed] [Google Scholar]
  19. Keys B., Karis J., Fadeel B., Valentin A., Norkrans G., Hagberg L., Chiodi F. V3 sequences of paired HIV-1 isolates from blood and cerebrospinal fluid cluster according to host and show variation related to the clinical stage of disease. Virology. 1993 Oct;196(2):475–483. doi: 10.1006/viro.1993.1503. [DOI] [PubMed] [Google Scholar]
  20. Koito A., Harrowe G., Levy J. A., Cheng-Mayer C. Functional role of the V1/V2 region of human immunodeficiency virus type 1 envelope glycoprotein gp120 in infection of primary macrophages and soluble CD4 neutralization. J Virol. 1994 Apr;68(4):2253–2259. doi: 10.1128/jvi.68.4.2253-2259.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Korber B. T., Kunstman K. J., Patterson B. K., Furtado M., McEvilly M. M., Levy R., Wolinsky S. M. Genetic differences between blood- and brain-derived viral sequences from human immunodeficiency virus type 1-infected patients: evidence of conserved elements in the V3 region of the envelope protein of brain-derived sequences. J Virol. 1994 Nov;68(11):7467–7481. doi: 10.1128/jvi.68.11.7467-7481.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Koyanagi Y., Miles S., Mitsuyasu R. T., Merrill J. E., Vinters H. V., Chen I. S. Dual infection of the central nervous system by AIDS viruses with distinct cellular tropisms. Science. 1987 May 15;236(4803):819–822. doi: 10.1126/science.3646751. [DOI] [PubMed] [Google Scholar]
  23. Li W. H., Tanimura M., Sharp P. M. Rates and dates of divergence between AIDS virus nucleotide sequences. Mol Biol Evol. 1988 Jul;5(4):313–330. doi: 10.1093/oxfordjournals.molbev.a040503. [DOI] [PubMed] [Google Scholar]
  24. Liu Z. Q., Wood C., Levy J. A., Cheng-Mayer C. The viral envelope gene is involved in macrophage tropism of a human immunodeficiency virus type 1 strain isolated from brain tissue. J Virol. 1990 Dec;64(12):6148–6153. doi: 10.1128/jvi.64.12.6148-6153.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Miedema F., Tersmette M., van Lier R. A. AIDS pathogenesis: a dynamic interaction between HIV and the immune system. Immunol Today. 1990 Aug;11(8):293–297. doi: 10.1016/0167-5699(90)90116-q. [DOI] [PubMed] [Google Scholar]
  26. Milich L., Margolin B., Swanstrom R. V3 loop of the human immunodeficiency virus type 1 Env protein: interpreting sequence variability. J Virol. 1993 Sep;67(9):5623–5634. doi: 10.1128/jvi.67.9.5623-5634.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Moore J. P., Thali M., Jameson B. A., Vignaux F., Lewis G. K., Poon S. W., Charles M., Fung M. S., Sun B., Durda P. J. Immunochemical analysis of the gp120 surface glycoprotein of human immunodeficiency virus type 1: probing the structure of the C4 and V4 domains and the interaction of the C4 domain with the V3 loop. J Virol. 1993 Aug;67(8):4785–4796. doi: 10.1128/jvi.67.8.4785-4796.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Morris J. F., Sternberg E. J., Gutshall L., Petteway S. R., Jr, Ivanoff L. A. Effect of a single amino acid substitution in the V3 domain of the human immunodeficiency virus type 1: generation of revertant viruses to overcome defects in infectivity in specific cell types. J Virol. 1994 Dec;68(12):8380–8385. doi: 10.1128/jvi.68.12.8380-8385.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Morrison H. G., Kirchhoff F., Desrosiers R. C. Evidence for the cooperation of gp120 amino acids 322 and 448 in SIVmac entry. Virology. 1993 Jul;195(1):167–174. doi: 10.1006/viro.1993.1357. [DOI] [PubMed] [Google Scholar]
  30. Pantaleo G., Graziosi C., Demarest J. F., Butini L., Montroni M., Fox C. H., Orenstein J. M., Kotler D. P., Fauci A. S. HIV infection is active and progressive in lymphoid tissue during the clinically latent stage of disease. Nature. 1993 Mar 25;362(6418):355–358. doi: 10.1038/362355a0. [DOI] [PubMed] [Google Scholar]
  31. Phillips R. E., Rowland-Jones S., Nixon D. F., Gotch F. M., Edwards J. P., Ogunlesi A. O., Elvin J. G., Rothbard J. A., Bangham C. R., Rizza C. R. Human immunodeficiency virus genetic variation that can escape cytotoxic T cell recognition. Nature. 1991 Dec 12;354(6353):453–459. doi: 10.1038/354453a0. [DOI] [PubMed] [Google Scholar]
  32. Power C., McArthur J. C., Johnson R. T., Griffin D. E., Glass J. D., Perryman S., Chesebro B. Demented and nondemented patients with AIDS differ in brain-derived human immunodeficiency virus type 1 envelope sequences. J Virol. 1994 Jul;68(7):4643–4649. doi: 10.1128/jvi.68.7.4643-4649.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Price R. W., Brew B., Sidtis J., Rosenblum M., Scheck A. C., Cleary P. The brain in AIDS: central nervous system HIV-1 infection and AIDS dementia complex. Science. 1988 Feb 5;239(4840):586–592. doi: 10.1126/science.3277272. [DOI] [PubMed] [Google Scholar]
  34. Reddy R. T., Achim C. L., Sirko D. A., Tehranchi S., Kraus F. G., Wong-Staal F., Wiley C. A. Sequence analysis of the V3 loop in brain and spleen of patients with HIV encephalitis. AIDS Res Hum Retroviruses. 1996 Apr 10;12(6):477–482. doi: 10.1089/aid.1996.12.477. [DOI] [PubMed] [Google Scholar]
  35. Rey F., Salaun D., Lesbordes J. L., Gadelle S., Ollivier-Henry F., Barré-Sinoussi F., Chermann J. C., Georges A. J. HIV-I and HIV-II double infection in Central African Republic. Lancet. 1986 Dec 13;2(8520):1391–1392. doi: 10.1016/s0140-6736(86)92027-1. [DOI] [PubMed] [Google Scholar]
  36. Shioda T., Levy J. A., Cheng-Mayer C. Small amino acid changes in the V3 hypervariable region of gp120 can affect the T-cell-line and macrophage tropism of human immunodeficiency virus type 1. Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9434–9438. doi: 10.1073/pnas.89.20.9434. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Shioda T., Oka S., Ida S., Nokihara K., Toriyoshi H., Mori S., Takebe Y., Kimura S., Shimada K., Nagai Y. A naturally occurring single basic amino acid substitution in the V3 region of the human immunodeficiency virus type 1 env protein alters the cellular host range and antigenic structure of the virus. J Virol. 1994 Dec;68(12):7689–7696. doi: 10.1128/jvi.68.12.7689-7696.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Simmonds P., Balfe P., Peutherer J. F., Ludlam C. A., Bishop J. O., Brown A. J. Human immunodeficiency virus-infected individuals contain provirus in small numbers of peripheral mononuclear cells and at low copy numbers. J Virol. 1990 Feb;64(2):864–872. doi: 10.1128/jvi.64.2.864-872.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Stamatatos L., Cheng-Mayer C. Evidence that the structural conformation of envelope gp120 affects human immunodeficiency virus type 1 infectivity, host range, and syncytium-forming ability. J Virol. 1993 Sep;67(9):5635–5639. doi: 10.1128/jvi.67.9.5635-5639.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Vazeux R., Brousse N., Jarry A., Henin D., Marche C., Vedrenne C., Mikol J., Wolff M., Michon C., Rozenbaum W. AIDS subacute encephalitis. Identification of HIV-infected cells. Am J Pathol. 1987 Mar;126(3):403–410. [PMC free article] [PubMed] [Google Scholar]
  41. Wei X., Ghosh S. K., Taylor M. E., Johnson V. A., Emini E. A., Deutsch P., Lifson J. D., Bonhoeffer S., Nowak M. A., Hahn B. H. Viral dynamics in human immunodeficiency virus type 1 infection. Nature. 1995 Jan 12;373(6510):117–122. doi: 10.1038/373117a0. [DOI] [PubMed] [Google Scholar]
  42. Westervelt P., Gendelman H. E., Ratner L. Identification of a determinant within the human immunodeficiency virus 1 surface envelope glycoprotein critical for productive infection of primary monocytes. Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3097–3101. doi: 10.1073/pnas.88.8.3097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Wolfs T. F., de Jong J. J., Van den Berg H., Tijnagel J. M., Krone W. J., Goudsmit J. Evolution of sequences encoding the principal neutralization epitope of human immunodeficiency virus 1 is host dependent, rapid, and continuous. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9938–9942. doi: 10.1073/pnas.87.24.9938. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Wyatt R., Thali M., Tilley S., Pinter A., Posner M., Ho D., Robinson J., Sodroski J. Relationship of the human immunodeficiency virus type 1 gp120 third variable loop to a component of the CD4 binding site in the fourth conserved region. J Virol. 1992 Dec;66(12):6997–7004. doi: 10.1128/jvi.66.12.6997-7004.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES