Abstract
Haemorrhagic shock was induced in anaesthetized, open-chest dogs by controlled arterial bleeding, sufficient to reduce and maintain mean arterial blood pressure at 40 mmHg for 30 min. The blood volume was then restored to the pre-shock level by rapid, intravenous reinfusion of the blood shed during the shock period. Haemorrhagic shock produced significant haemodynamic changes, characterized by a marked depression of myocardial function. Cardiac output (1226 +/- 57 ml min-1), peak aortic blood flow (6030 +/- 383 ml min-1) and maximum rate of rise of left ventricular pressure (2708 +/- 264 mmHg s-1) were all reduced by more than 50%. The haemodynamic profile was markedly improved by reinfusion of shed blood but this improvement was not sustained. There was a gradual decline such that 50% of the untreated animals suffered complete circulatory collapse and death between 60 and 120 min following reinfusion. Neither haemorrhagic shock, nor reinfusion of shed blood produced any consistent or significant changes in the myocardial adenine nucleotide pool. The ATP, ADP and AMP levels were, respectively, 25.9 +/- 4.2; 15.6 +/- 1.0; 4.3 +/- 1.9 nmol g-1 protein, before haemorrhagic shock; 21.6 +/- 3.4; 21.5 +/- 2.5; 10.2 +/- 2.7 nmol g-1 protein, after 30 min haemorrhagic shock; and 29.9 +/- 3.9; 16.5 +/- 1.2; 4.2 +/- 1.1 nmol g-1 protein, 60 min following reinfusion of shed blood. Pretreatment with allopurinol (50.0 mg kg-1 i.v.), 60 min before inducing haemorrhagic shock, had no significant effect upon the haemodynamic response to shock, but did prevent the gradual decline seen following reinfusion in the untreated animals.(ABSTRACT TRUNCATED AT 250 WORDS)
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akizuki S., Yoshida S., Chambers D. E., Eddy L. J., Parmley L. F., Yellon D. M., Downey J. M. Infarct size limitation by the xanthine oxidase inhibitor, allopurinol, in closed-chest dogs with small infarcts. Cardiovasc Res. 1985 Nov;19(11):686–692. doi: 10.1093/cvr/19.11.686. [DOI] [PubMed] [Google Scholar]
- Baker C. H. Protection against irreversible hemorrhagic shock by allopurinol. Proc Soc Exp Biol Med. 1972 Nov;141(2):694–698. doi: 10.3181/00379727-141-36854. [DOI] [PubMed] [Google Scholar]
- Braunwald E., Kloner R. A. The stunned myocardium: prolonged, postischemic ventricular dysfunction. Circulation. 1982 Dec;66(6):1146–1149. doi: 10.1161/01.cir.66.6.1146. [DOI] [PubMed] [Google Scholar]
- Chaudry I. H., Sayeed M. M., Baue A. E. Effect of hemorrhagic shock on tissue adenine nucleotides in conscious rats. Can J Physiol Pharmacol. 1974 Apr;52(2):131–137. doi: 10.1139/y74-019. [DOI] [PubMed] [Google Scholar]
- Crowell J. W., Jones C. E., Smith E. E. Effect of allopurinol on hemorrhagic shock. Am J Physiol. 1969 Apr;216(4):744–748. doi: 10.1152/ajplegacy.1969.216.4.744. [DOI] [PubMed] [Google Scholar]
- Cunningham S. K., Keaveny T. V. Effect of a xanthine oxidase inhibitor on adenine nucleotide degradation in hemorrhagic shock. Eur Surg Res. 1978;10(5):305–313. doi: 10.1159/000128020. [DOI] [PubMed] [Google Scholar]
- DeWall R. A., Vasko K. A., Stanley E. L., Kezdi P. Responses of the ischemic myocardium to allopurinol. Am Heart J. 1971 Sep;82(3):362–370. doi: 10.1016/0002-8703(71)90302-4. [DOI] [PubMed] [Google Scholar]
- Downing S. E. Cardiac performance in hemorrhagic shock. Tex Rep Biol Med. 1979;39:157–172. [PubMed] [Google Scholar]
- Gardner T. J., Stewart J. R., Casale A. S., Downey J. M., Chambers D. E. Reduction of myocardial ischemic injury with oxygen-derived free radical scavengers. Surgery. 1983 Sep;94(3):423–427. [PubMed] [Google Scholar]
- Hopkins R. W., Abraham J., Simeone F. A., Damewood C. A. Effects of allopurinol on hepatic adenosine nucleotides in hemorrhagic shock. J Surg Res. 1975 Dec;19(6):381–390. doi: 10.1016/0022-4804(75)90067-0. [DOI] [PubMed] [Google Scholar]
- Jolly S. R., Kane W. J., Bailie M. B., Abrams G. D., Lucchesi B. R. Canine myocardial reperfusion injury. Its reduction by the combined administration of superoxide dismutase and catalase. Circ Res. 1984 Mar;54(3):277–285. doi: 10.1161/01.res.54.3.277. [DOI] [PubMed] [Google Scholar]
- Lefer A. M., Daw J. C., Berne R. M. Cardiac and skeletal muscle metabolic energy stores in hemorrhagic shock. Am J Physiol. 1969 Mar;216(3):483–486. doi: 10.1152/ajplegacy.1969.216.3.483. [DOI] [PubMed] [Google Scholar]
- McCord J. M. Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med. 1985 Jan 17;312(3):159–163. doi: 10.1056/NEJM198501173120305. [DOI] [PubMed] [Google Scholar]
- Reimer K. A., Jennings R. B. Failure of the xanthine oxidase inhibitor allopurinol to limit infarct size after ischemia and reperfusion in dogs. Circulation. 1985 May;71(5):1069–1075. doi: 10.1161/01.cir.71.5.1069. [DOI] [PubMed] [Google Scholar]
- SARNOFF S. J., CASE R. B., WAITHE P. E., ISAACS J. P. Insufficient coronary flow and myocardial failure as a complication factor in late hemorrhagic shock. Am J Physiol. 1954 Mar;176(3):439–444. doi: 10.1152/ajplegacy.1954.176.3.439. [DOI] [PubMed] [Google Scholar]
- Salles M. S., Tabatabai M., Shahidi H. A. Blood glucose levels in dogs pretreated with allopurinol during hemorrhagic shock. Am J Physiol. 1972 Sep;223(3):679–681. doi: 10.1152/ajplegacy.1972.223.3.679. [DOI] [PubMed] [Google Scholar]
- Shlafer M., Kane P. F., Kirsh M. M. Superoxide dismutase plus catalase enhances the efficacy of hypothermic cardioplegia to protect the globally ischemic, reperfused heart. J Thorac Cardiovasc Surg. 1982 Jun;83(6):830–839. [PubMed] [Google Scholar]