Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1990 Jun;172(6):3512–3514. doi: 10.1128/jb.172.6.3512-3514.1990

Amino-terminal deletions define a glutamine amide transfer domain in glutamine phosphoribosylpyrophosphate amidotransferase and other PurF-type amidotransferases.

B G Mei 1, H Zalkin 1
PMCID: PMC209170  PMID: 2188964

Abstract

A series of deletions was constructed in cloned Escherichia coli purF encoding glutamine phosphoribosylpyrophosphate amidotransferase. These deletions extended into the NH2 terminus of the protein and removed amino acids that are required for glutamine-dependent enzyme activity. Enzyme function, ascribed to the NH3-dependent activity, was retained in deletions that removed up to 237 amino acids. This result supports a model in which PurF-type amidotransferases contain an NH2-terminal glutamine amide transfer domain of approximately 194 to 200 amino acids fused to an aminator domain with NH3-dependent function.

Full text

PDF
3512

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrulis I. L., Shotwell M., Evans-Blackler S., Zalkin H., Siminovitch L., Ray P. N. Fine structure analysis of the Chinese hamster AS gene encoding asparagine synthetase. Gene. 1989 Aug 1;80(1):75–85. doi: 10.1016/0378-1119(89)90252-7. [DOI] [PubMed] [Google Scholar]
  2. Henikoff S. Unidirectional digestion with exonuclease III in DNA sequence analysis. Methods Enzymol. 1987;155:156–165. doi: 10.1016/0076-6879(87)55014-5. [DOI] [PubMed] [Google Scholar]
  3. Makaroff C. A., Zalkin H., Switzer R. L., Vollmer S. J. Cloning of the Bacillus subtilis glutamine phosphoribosylpyrophosphate amidotransferase gene in Escherichia coli. Nucleotide sequence determination and properties of the plasmid-encoded enzyme. J Biol Chem. 1983 Sep 10;258(17):10586–10593. [PubMed] [Google Scholar]
  4. Messenger L. J., Zalkin H. Glutamine phosphoribosylpyrophosphate amidotransferase from Escherichia coli. Purification and properties. J Biol Chem. 1979 May 10;254(9):3382–3392. [PubMed] [Google Scholar]
  5. Mäntsälä P., Zalkin H. Glutamine amidotransferase function. Replacement of the active-site cysteine in glutamine phosphoribosylpyrophosphate amidotransferase by site-directed mutagenesis. J Biol Chem. 1984 Nov 25;259(22):14230–14236. [PubMed] [Google Scholar]
  6. Mäntsälä P., Zalkin H. Glutamine nucleotide sequence of Saccharomyces cerevisiae ADE4 encoding phosphoribosylpyrophosphate amidotransferase. J Biol Chem. 1984 Jul 10;259(13):8478–8484. [PubMed] [Google Scholar]
  7. Oliver G., Gosset G., Sanchez-Pescador R., Lozoya E., Ku L. M., Flores N., Becerril B., Valle F., Bolivar F. Determination of the nucleotide sequence for the glutamate synthase structural genes of Escherichia coli K-12. Gene. 1987;60(1):1–11. doi: 10.1016/0378-1119(87)90207-1. [DOI] [PubMed] [Google Scholar]
  8. Sampei G., Mizobuchi K. Nucleotide sequence of the Escherichia coli purF gene encoding amidophosphoribosyltransferase for de novo purine nucleotide synthesis. Nucleic Acids Res. 1988 Sep 12;16(17):8717–8717. doi: 10.1093/nar/16.17.8717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Smith J. M., Gots J. S. purF-lac fusion and direction of purF transcription in Escherichia coli. J Bacteriol. 1980 Sep;143(3):1156–1164. doi: 10.1128/jb.143.3.1156-1164.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Surin B. P., Downie J. A. Characterization of the Rhizobium leguminosarum genes nodLMN involved in efficient host-specific nodulation. Mol Microbiol. 1988 Mar;2(2):173–183. doi: 10.1111/j.1365-2958.1988.tb00019.x. [DOI] [PubMed] [Google Scholar]
  11. Tso J. Y., Hermodson M. A., Zalkin H. Glutamine phosphoribosylpyrophosphate amidotransferase from cloned Escherichia coli purF. NH2-terminal amino acid sequence, identification of the glutamine site, and trace metal analysis. J Biol Chem. 1982 Apr 10;257(7):3532–3536. [PubMed] [Google Scholar]
  12. Tso J. Y., Zalkin H., van Cleemput M., Yanofsky C., Smith J. M. Nucleotide sequence of Escherichia coli purF and deduced amino acid sequence of glutamine phosphoribosylpyrophosphate amidotransferase. J Biol Chem. 1982 Apr 10;257(7):3525–3531. [PubMed] [Google Scholar]
  13. VOGEL H. J., BONNER D. M. Acetylornithinase of Escherichia coli: partial purification and some properties. J Biol Chem. 1956 Jan;218(1):97–106. [PubMed] [Google Scholar]
  14. Walker J. E., Gay N. J., Saraste M., Eberle A. N. DNA sequence around the Escherichia coli unc operon. Completion of the sequence of a 17 kilobase segment containing asnA, oriC, unc, glmS and phoS. Biochem J. 1984 Dec 15;224(3):799–815. doi: 10.1042/bj2240799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Weng M., Makaroff C. A., Zalkin H. Nucleotide sequence of Escherichia coli pyrG encoding CTP synthetase. J Biol Chem. 1986 Apr 25;261(12):5568–5574. [PubMed] [Google Scholar]
  16. Zalkin H., Argos P., Narayana S. V., Tiedeman A. A., Smith J. M. Identification of a trpG-related glutamine amide transfer domain in Escherichia coli GMP synthetase. J Biol Chem. 1985 Mar 25;260(6):3350–3354. [PubMed] [Google Scholar]
  17. Zalkin H., Kling D. Anthranilate synthetase. Purification and properties of component I from Salmonella typhimurium. Biochemistry. 1968 Oct;7(10):3566–3573. doi: 10.1021/bi00850a034. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES