Abstract
Klebsiella aerogenes was grown in chemostat culture with the pH controlled to ±0.01 and temperature to ±0.1°C. The oxygen tension of the culture was regulated by changing the partial pressure of oxygen in the gas phase and recorded by means of an oxygen electrode. Reduced pyridine nucleotide was monitored continuously in the culture by means of direct fluorimetry. On applying an anaerobic shock to the culture, damped oscillations in pyridine nucleotide fluorescence were obtained. Further anaerobic shocks decreased the damping and eventually gave rise to undamped oscillations of a 2–3 min period which continued for several days. These oscillations were paralleled by oscillations of the same frequency in respiration rate. The amplitude of the oscillations in the respiration rate was equivalent to only 1% of the total steady-state respiration, whereas that of pyridine nucleotide oscillations was equivalent to 10% of the total aerobic/anaerobic fluorescence response. The oscillations ceased on interrupting the glucose feed but restarted on adding excess glucose to the culture. Addition of succinate also restarted the oscillations so that they appear not to be of glycolytic origin. The frequency of oscillations varied with growth rate and conditions. Oscillations of much lower frequency were obtained under limited-oxygen and anaerobic conditions than under fully aerobic conditions. Under glucose-limited conditions, fluctuations were found in adenosine triphosphate (ATP) content which were in phase with the pyridine nucleotide oscillations, but under nitrogen-limited growth conditions no such fluctuations in ATP were observed. The primary oscillating pathway could not be identified but the mechanism would appear to be quite different from that involved in oscillations observed in yeast cells. The synchronization of oscillations and observations of negative damping could be explained by a syntalysis effect.
Full Text
The Full Text of this article is available as a PDF (627.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BETZ A., CHANCE B. PHASE RELATIONSHIP OF GLYCOLYTIC INTERMEDIATES IN YEAST CELLS WITH OSCILLATORY METABOLIC CONTROL. Arch Biochem Biophys. 1965 Mar;109:585–594. doi: 10.1016/0003-9861(65)90404-2. [DOI] [PubMed] [Google Scholar]
- ESTABROOK R. W. Fluorometric measurement of reduced pyridine nucleotide in cellular and subcellular particles. Anal Biochem. 1962 Sep;4:231–245. doi: 10.1016/0003-2697(62)90006-4. [DOI] [PubMed] [Google Scholar]
- ESTABROOK R. W., MAITRA P. K. A fluorimetric method for the quantitative microanalysis of adenine and pyridine nucleotides. Anal Biochem. 1962 May;3:369–382. doi: 10.1016/0003-2697(62)90065-9. [DOI] [PubMed] [Google Scholar]
- Ghosh A., Chance B. Oscillations of glycolytic intermediates in yeast cells. Biochem Biophys Res Commun. 1964 Jun 1;16(2):174–181. doi: 10.1016/0006-291x(64)90357-2. [DOI] [PubMed] [Google Scholar]
- Harrison D. E., Maitra P. K. Control of respiration and metabolism in growing Klebsiella aerogenes. The role of adenine nucleotides. Biochem J. 1969 May;112(5):647–656. doi: 10.1042/bj1120647. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pye K., Chance B. Sustained sinusoidal oscillations of reduced pyridine nucleotide in a cell-free extract of Saccharomyces carlsbergensis. Proc Natl Acad Sci U S A. 1966 Apr;55(4):888–894. doi: 10.1073/pnas.55.4.888. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SIKYTA B., SLAZAK J. A PERIODIC PHENOMENON IN REGULATION OF PYRUVATE BIOSYNTHESIS IN ESCHERICHIA COLI B. Biochim Biophys Acta. 1965 Apr 12;100:311–313. doi: 10.1016/0304-4165(65)90463-0. [DOI] [PubMed] [Google Scholar]