Abstract
Pigment migration in cultured erythrophores of the squirrel fish Holocentrus ascensionis, after manipulation with K+, epinephrine, 3',5'- dibutyryl cyclic adenosine monophosphate, theophylline, and caffeine, is essentially identical to that observed in this chromatophore in situ. For such observations, the erythrophores are dissociated from the scales with hyaluronidase and collagenase, and allowed to spread on an amorphous collagen substrate, where they resemble the discoid erythrophore in situ. In this state, they are readily fixed by glutaraldehyde and osmium tetroxide, and are then critical-point dried for whole-cell viewing in the high voltage electron microscope. The organization and fine structure of the erythrophore cytoplast was stereoscopically examined after fixation of the pigment granules in four experimental states: pigment dispersed, pigment aggregated, pigment aggregating, and pigment dispersing. In the dispersed cell, granules are contained in an extensive three-dimensional lattice composed of radially oriented microtubules and a network of fine filaments 3-6 nm in diameter (microtrabeculae), whereas in the aggregated cell, the microtrabecular system is absent, and the majority of the microtubules appear displaced into the cortices on the cytoplasmic surface of the plasma membrane. In cells fixed while aggregating, few microtrabeculae are observed, although formless thickenings are observed in the cortices, on granules, and between clumped granules. In dispersing cells, the microtrabecular system is reformed from material stored in the cortices and with the granules in the centrosphere. These observations suggest that the granules are suspended in a dynamic microtrabecular system that withdraws during pigment aggregation and is restructured during pigment dispersion. The microtubules guide linear granule motion not by defining physical channels, but by a recognizable affinity of microtubules, microtrabeculae, and granules for one another.
Full Text
The Full Text of this article is available as a PDF (6.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Buckley I. K. Three dimensional fine structure of cultured cells: possible implications for subcellular motility. Tissue Cell. 1975;7(1):51–72. doi: 10.1016/s0040-8166(75)80007-3. [DOI] [PubMed] [Google Scholar]
- Green L. MECHANISM OF MOVEMENTS OF GRANULES IN MELANOCYTES OF Fundulus heteroclitus. Proc Natl Acad Sci U S A. 1968 Apr;59(4):1179–1186. doi: 10.1073/pnas.59.4.1179. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hsu Y. C., Baskar J., Stevens L. C., Rash J. E. Development in vitro of mouse embryos from the two-cell egg stage to the early somite stage. J Embryol Exp Morphol. 1974 Jan;31(1):235–245. [PubMed] [Google Scholar]
- Malawista S. E. The melanocyte model. Colchicine-like effects of other antimitotic agents. J Cell Biol. 1971 Jun;49(3):848–855. doi: 10.1083/jcb.49.3.848. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McGuire J., Moellmann G. Cytochalasin B: effects on microfilaments and movement of melanin granules within melanocytes. Science. 1972 Feb 11;175(4022):642–644. doi: 10.1126/science.175.4022.642. [DOI] [PubMed] [Google Scholar]
- Pollard T. D. The role of actin in the temperature-dependent gelation and contraction of extracts of Acanthamoeba. J Cell Biol. 1976 Mar;68(3):579–601. doi: 10.1083/jcb.68.3.579. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Porter K. R. Microtubules in intracellular locomotion. Ciba Found Symp. 1973;14:149–169. doi: 10.1002/9780470719978.ch7. [DOI] [PubMed] [Google Scholar]
- Sloboda R. D., Rudolph S. A., Rosenbaum J. L., Greengard P. Cyclic AMP-dependent endogenous phosphorylation of a microtubule-associated protein. Proc Natl Acad Sci U S A. 1975 Jan;72(1):177–181. doi: 10.1073/pnas.72.1.177. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weis-Fogh T., Amos W. B. Evidence for a new mechanism of cell motility. Nature. 1972 Apr 7;236(5345):301–304. doi: 10.1038/236301a0. [DOI] [PubMed] [Google Scholar]
- Wikswo M. A., Novales R. R. Effect of colchicine on microtubules in the melanophores of Fundulus heteroclitus. J Ultrastruct Res. 1972 Nov;41(3):189–201. doi: 10.1016/s0022-5320(72)90063-9. [DOI] [PubMed] [Google Scholar]
- Wikswo M. A., Novales R. R. The effect of colchicine on migration of pigment granules in the melanophores of Fundulus heteroclitus. Biol Bull. 1969 Aug;137(1):228–237. doi: 10.2307/1539945. [DOI] [PubMed] [Google Scholar]
- Wolosewick J. J., Porter K. R. Stereo high-voltage electron microscopy of whole cells of the human diploid line, WI-38. Am J Anat. 1976 Nov;147(3):303–323. doi: 10.1002/aja.1001470305. [DOI] [PubMed] [Google Scholar]