Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1980 Mar 1;84(3):668–679. doi: 10.1083/jcb.84.3.668

Distribution of tubulin-containing structures in the egg of the sea urchin Strongylocentrotus purpuratus from fertilization through first cleavage

PMCID: PMC2110571  PMID: 6987246

Abstract

Eggs of the sea urchin Strongylocentrotus purpuratus were examined by indirect immunofluorescence microscopy for tubulin-containing structures at intervals from fertilization through first cleavage. The staining revealed that the monaster is made up not only of the sperm aster but also of tubulin-staining fibers originating elsewhere in the egg. The monaster does not divide directly but is broken down first before the amphiaster or interphase asters begin to form. The interphase asters reach a peak of development at the streak stage and are in turn broken down before the formation of the mitotic apparatus. The breakdown of the monaster, interphase asters, as well as the asters of the mitotic apparatus proceeds from the cell center or aster centers to the periphery of the cell and is followed by growth of new asters, also proceeding outward from the aster centers. The pattern suggests a transient wavelike movement of some condition, or factor, which favors microtubule depolymerization.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Fuller G. M., Brinkley B. R., Boughter J. M. Immunofluorescence of mitotic spindles by using monospecific antibody against bovine brain tubulin. Science. 1975 Mar 14;187(4180):948–950. doi: 10.1126/science.1096300. [DOI] [PubMed] [Google Scholar]
  2. Gilkey J. C., Jaffe L. F., Ridgway E. B., Reynolds G. T. A free calcium wave traverses the activating egg of the medaka, Oryzias latipes. J Cell Biol. 1978 Feb;76(2):448–466. doi: 10.1083/jcb.76.2.448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Harris P. A spiral cortical fiber system in fertilized sea urchin eggs. Dev Biol. 1979 Feb;68(2):525–532. doi: 10.1016/0012-1606(79)90223-9. [DOI] [PubMed] [Google Scholar]
  4. Harris P. The role of membranes in the ogranization of the mitotic apparatus. Exp Cell Res. 1975 Sep;94(2):409–425. doi: 10.1016/0014-4827(75)90507-8. [DOI] [PubMed] [Google Scholar]
  5. Longo F. J. An ultrastructural analysis of mitosis and cytokinesis in the zygote of the sea urchin, Arbacia punctulata. J Morphol. 1972 Oct;138(2):207–238. doi: 10.1002/jmor.1051380206. [DOI] [PubMed] [Google Scholar]
  6. Longo F. J., Anderson E. The fine structure of pronuclear development and fusion in the sea urchin, Arbacia punctulata. J Cell Biol. 1968 Nov;39(2):339–368. doi: 10.1083/jcb.39.2.339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Mazia D., Schatten G., Sale W. Adhesion of cells to surfaces coated with polylysine. Applications to electron microscopy. J Cell Biol. 1975 Jul;66(1):198–200. doi: 10.1083/jcb.66.1.198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Wassarman P. M., Fujiwara K. Immunofluorescent anti-tubulin staining of spindles during meiotic maturation of mouse oocytes in vitro. J Cell Sci. 1978 Feb;29:171–188. doi: 10.1242/jcs.29.1.171. [DOI] [PubMed] [Google Scholar]
  9. Weber K., Bibring T., Osborn M. Specific visualization of tubulin-containing structures in tissue culture cells by immunofluorescence. Cytoplasmic microtubules, vinblastine-induced paracrystals, and mitotic figures. Exp Cell Res. 1975 Oct 1;95(1):111–120. doi: 10.1016/0014-4827(75)90615-1. [DOI] [PubMed] [Google Scholar]
  10. Weber K., Wehland J., Herzog W. Griseofulvin interacts with microtubules both in vivo and in vitro. J Mol Biol. 1976 Apr 25;102(4):817–829. doi: 10.1016/0022-2836(76)90293-x. [DOI] [PubMed] [Google Scholar]
  11. Webster R. E., Osborn M., Weber K. Visualization of the same PtK2 cytoskeletons by both immunofluorescence and low power electron microscopy. Exp Cell Res. 1978 Nov;117(1):47–61. doi: 10.1016/0014-4827(78)90426-3. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES