Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1981 Jun 1;89(3):485–494. doi: 10.1083/jcb.89.3.485

Antibodies to the major insoluble milk fat globule membrane-associated protein: specific location in apical regions of lactating epithelial cells

PMCID: PMC2111789  PMID: 7019216

Abstract

Milk lipid globules of various species are surrounded by a membrane structure that is separated from the triglyceride core of the globule by a densely staining fuzzy coat layer of 10- to 50-nm thickness. This internal coat structure remains attached to the membrane during isolation and extraction with low- and high-salt buffers, is insoluble in nondenaturing detergents, and is enriched in an acidic glycoprotein (butyrophilin) with an apparent Mr of 67,000. Guinea pig antibodies against this protein, which show cross-reaction with the corresponding protein in some (goat) but not other (human, rat) species, have been used for localization of butyrophilin on frozen sections of various tissues from cow by immunofluorescence and electron microscopy. Significant reaction is found only in milk-secreting epithelial cells and not in other cell types of mammary gland and various epithelial tissues. In milk-secreting cells, the staining is restricted to the apical cell surface, including budding milk lipid globules, and to the periphery of the milk lipid globules contained in the alveolar lumina. These findings indicate that butyrophilin, which is constitutively secreted by surface budding in coordination with milk lipid production, is located at the apical surface and is not detected at basolateral surfaces, in endoplasmic reticulum, and in Golgi apparatus. This protein structure represents an example of a cell type-specific cytoskeletal component in a cell apex. It is suggested that this antigen provides a specific marker for the apical surface of milk- secreting cells and that butyrophilin is involved in the vectorial discharge of milk lipid globules.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARGMANN W., KNOOP A. Uber die Morphologie der Milchsekretion; lichtund elektronenmikroskopische Studien an der Milchdrüse Ratte. Z Zellforsch Mikrosk Anat. 1959;49(3):344–388. [PubMed] [Google Scholar]
  2. Blomberg F., Cohen R. S., Siekevitz P. The structure of postsynaptic densities isolated from dog cerebral cortex. II. Characterization and arrangement of some of the major proteins within the structure. J Cell Biol. 1977 Jul;74(1):204–225. doi: 10.1083/jcb.74.1.204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bommeli W. Die Ultrastruktur der Milchdrüsenalveole des Rindes, insbesondere die Basalfalten des Epithels und der Mitochondrien-Desmosomen-Komplex. Zentralbl Veterinarmed C. 1972 Dec;1(4):299–325. [PubMed] [Google Scholar]
  4. Bretscher A., Weber K. Fimbrin, a new microfilament-associated protein present in microvilli and other cell surface structures. J Cell Biol. 1980 Jul;86(1):335–340. doi: 10.1083/jcb.86.1.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bretscher A., Weber K. Localization of actin and microfilament-associated proteins in the microvilli and terminal web of the intestinal brush border by immunofluorescence microscopy. J Cell Biol. 1978 Dec;79(3):839–845. doi: 10.1083/jcb.79.3.839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bretscher A., Weber K. Villin: the major microfilament-associated protein of the intestinal microvillus. Proc Natl Acad Sci U S A. 1979 May;76(5):2321–2325. doi: 10.1073/pnas.76.5.2321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bruder G., Fink A., Jarasch E. D. The B-type cytochrome in endoplasmic reticulum of mammary gland epithelium and milk fat globule membranes consists of two components cytochrome b5 and cytochrome P-420. Exp Cell Res. 1978 Nov;117(1):207–217. doi: 10.1016/0014-4827(78)90443-3. [DOI] [PubMed] [Google Scholar]
  8. Craig S. W., Pardo J. V. alpha-Actinin localization in the junctional complex of intestinal epithelial cells. J Cell Biol. 1979 Jan;80(1):203–210. doi: 10.1083/jcb.80.1.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Danno G. i. Isoelectric focusing of proteins separated by SDS-polyacrylamide gel electrophoresis. Anal Biochem. 1977 Nov;83(1):189–193. doi: 10.1016/0003-2697(77)90525-5. [DOI] [PubMed] [Google Scholar]
  10. Franke W. W., Appelhans B., Schmid E., Freudenstein C., Osborn M., Weber K. The organization of cytokeratin filaments in the intestinal epithelium. Eur J Cell Biol. 1979 Aug;19(3):255–268. [PubMed] [Google Scholar]
  11. Franke W. W., Grund C., Schmid E., Mandelkow E. Paracrystalline arrays of membrane-to-membrane cross bridges associated with the inner surface of plasma membrane. J Cell Biol. 1978 May;77(2):323–328. doi: 10.1083/jcb.77.2.323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Franke W. W., Lüder M. R., Kartenbeck J., Zerban H., Keenan T. W. Involvement of vesicle coat material in casein secretion and surface regeneration. J Cell Biol. 1976 Apr;69(1):173–195. doi: 10.1083/jcb.69.1.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Franke W. W., Schmid E., Freudenstein C., Appelhans B., Osborn M., Weber K., Keenan T. W. Intermediate-sized filaments of the prekeratin type in myoepithelial cells. J Cell Biol. 1980 Mar;84(3):633–654. doi: 10.1083/jcb.84.3.633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Franke W. W., Schmid E., Osborn M., Weber K. Intermediate-sized filaments of human endothelial cells. J Cell Biol. 1979 Jun;81(3):570–580. doi: 10.1083/jcb.81.3.570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Franke W. W., Schmid E., Vandekerckhove J., Weber K. Permanently proliferating rat vascular smooth muscle cell with maintained expression of smooth muscle characteristics, including actin of the vascular smooth muscle type. J Cell Biol. 1980 Dec;87(3 Pt 1):594–600. doi: 10.1083/jcb.87.3.594. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Freudenstein C., Keenan T. W., Eigel W. N., Sasaki M., Stadler J., Franke W. W. Preparation and characterization of the inner coat material associated with fat globule membranes from bovine and human milk. Exp Cell Res. 1979 Feb;118(2):277–294. doi: 10.1016/0014-4827(79)90153-8. [DOI] [PubMed] [Google Scholar]
  17. Geiger B., Tokuyasu K. T., Singer S. J. Immunocytochemical localization of alpha-actinin in intestinal epithelial cells. Proc Natl Acad Sci U S A. 1979 Jun;76(6):2833–2837. doi: 10.1073/pnas.76.6.2833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Granger B. L., Lazarides E. Desmin and vimentin coexist at the periphery of the myofibril Z disc. Cell. 1979 Dec;18(4):1053–1063. doi: 10.1016/0092-8674(79)90218-6. [DOI] [PubMed] [Google Scholar]
  19. Helminen H. J., Ericsson J. L. Studies on mammary gland involution. I. On the ultrastructure of the lactating mammary gland. J Ultrastruct Res. 1968 Nov;25(3):193–213. doi: 10.1016/s0022-5320(68)80069-3. [DOI] [PubMed] [Google Scholar]
  20. Huggins J. W., Trenbeath T. P., Chesnut R. W., Carothers C. A., Carraway K. L. Purification of plasma membranes of rat mammary gland. Comparisons of subfractions with rat milk fat globule membrane. Exp Cell Res. 1980 Apr;126(2):279–288. doi: 10.1016/0014-4827(80)90266-9. [DOI] [PubMed] [Google Scholar]
  21. Jarasch E. D., Bruder G., Keenan T. W., Franke W. W. Redox constituents in milk fat globule membranes and rough endoplasmic reticulum from lactating mammary gland. J Cell Biol. 1977 Apr;73(1):223–241. doi: 10.1083/jcb.73.1.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Keenan T. W., Sasaki M., Eigel W. N., Mooré D. J., Franke W. W., Zulak I. M., Bushway A. A. Characterization of a secretory vesicle-rich fraction from lactating bovine mammary gland. Exp Cell Res. 1979 Nov;124(1):47–61. doi: 10.1016/0014-4827(79)90256-8. [DOI] [PubMed] [Google Scholar]
  23. Kelly P. T., Cotman C. W. Synaptic proteins. Characterization of tubulin and actin and identification of a distinct postsynaptic density polypeptide. J Cell Biol. 1978 Oct;79(1):173–183. doi: 10.1083/jcb.79.1.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Krohne G., Franke W. W. Immunological identification and localization of the predominant nuclear protein of the amphibian oocyte nucleus. Proc Natl Acad Sci U S A. 1980 Feb;77(2):1034–1038. doi: 10.1073/pnas.77.2.1034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mather I. H., Keenan T. W. Studies on the structure of milk fat globule membrane. J Membr Biol. 1975 Apr 23;21(1-2):65–85. doi: 10.1007/BF01941062. [DOI] [PubMed] [Google Scholar]
  26. Mather I. H. Separation of the proteins of bovine milk-fat globule membrane by electrofocusing. Biochim Biophys Acta. 1978 Dec 4;514(1):25–36. doi: 10.1016/0005-2736(78)90074-3. [DOI] [PubMed] [Google Scholar]
  27. Murray L. R., Powell K. M., Sasaki M., Eigel W. N., Keenan T. W. Comparison of lectin receptor and membrane coat-associated glycoproteins of milk lipid globule membranes. Comp Biochem Physiol B. 1979;63(1):137–145. doi: 10.1016/0305-0491(79)90246-3. [DOI] [PubMed] [Google Scholar]
  28. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  29. Osborn M., Webster R. E., Weber K. Individual microtubules viewed by immunofluorescence and electron microscopy in the same PtK2 cell. J Cell Biol. 1978 Jun;77(3):R27–R34. doi: 10.1083/jcb.77.3.r27. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Patton S., Keenan T. W. The milk fat globule membrane. Biochim Biophys Acta. 1975 Oct 31;415(3):273–309. doi: 10.1016/0304-4157(75)90011-8. [DOI] [PubMed] [Google Scholar]
  31. Peixoto de Menezes A., Pinto da Silva P. Freeze-fracture observations of the lactating rat mammary gland. Membrane events during milk fat secretion. J Cell Biol. 1978 Mar;76(3):767–778. doi: 10.1083/jcb.76.3.767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Powell J. T., Järlfors U., Brew K. Enzymic characteristics of fat globule membranes from bovine colostrum and bovine milk. J Cell Biol. 1977 Mar;72(3):617–627. doi: 10.1083/jcb.72.3.617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Ramaekers F. C., Osborn M., Schimid E., Weber K., Bloemendal H., Franke W. W. Identification of the cytoskeletal proteins in lens-forming cells, a special epitheloid cell type. Exp Cell Res. 1980 Jun;127(2):309–327. doi: 10.1016/0014-4827(80)90437-1. [DOI] [PubMed] [Google Scholar]
  34. Sasaki M., Eigel W. N., Keenan T. W. Lactose and major milk proteins are present in secretory vesicle-rich fractions from lactating mammary gland. Proc Natl Acad Sci U S A. 1978 Oct;75(10):5020–5024. doi: 10.1073/pnas.75.10.5020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sun T. T., Shih C., Green H. Keratin cytoskeletons in epithelial cells of internal organs. Proc Natl Acad Sci U S A. 1979 Jun;76(6):2813–2817. doi: 10.1073/pnas.76.6.2813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Wooding F. B. Formation of the milk fat globule membrane without participation of the plasmalemma. J Cell Sci. 1973 Jul;13(1):221–235. doi: 10.1242/jcs.13.1.221. [DOI] [PubMed] [Google Scholar]
  37. Wooding F. B. The mechanism of secretion of the milk fat globule. J Cell Sci. 1971 Nov;9(3):805–821. doi: 10.1242/jcs.9.3.805. [DOI] [PubMed] [Google Scholar]
  38. Yen S. H., Dahl D., Schachner M., Shelanski M. L. Biochemistry of the filaments of brain. Proc Natl Acad Sci U S A. 1976 Feb;73(2):529–533. doi: 10.1073/pnas.73.2.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Zerban H., Franke W. W. Milk fat globule membranes devoid of intramembranous particles. Cell Biol Int Rep. 1978 Jan;2(1):87–98. doi: 10.1016/0309-1651(78)90088-7. [DOI] [PubMed] [Google Scholar]
  40. Zerban H., Franke W. W. Structures indicative of keratinization in lactating cells of bovine mammary gland. Differentiation. 1977 Jan 14;7(2):127–131. doi: 10.1111/j.1432-0436.1977.tb01505.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES