Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1982 Feb 1;92(2):493–504. doi: 10.1083/jcb.92.2.493

Selective emergence of differentiated chondrocytes during serum-free culture of cells derived from fetal rat calvaria

PMCID: PMC2112076  PMID: 7061592

Abstract

Cells dispersed from the chondrocranial portions of fetal rat calvaria proliferated and performed specialized functions during primary culture in a chemically defined medium. Mature cultures were typified by multilayered clusters of redifferentiating cartilage cells. Flattened cells that lacked distinguishing features occupied areas between the clusters. Alkaline phosphate-enriched, ultrastructurally typical chondrocytes within the clusters were encased in a dense extracellular matrix that stained prominently for chondroitin sulfate proteoglycans. This matrix contained fibrils measuring 19 nm in diameter, which were associated with proteoglycan granules that preferentially bound ruthenium red. A progressive increase in the number of cells indicated the proliferation of certain elements in the primary culture. The cells in primary culture were biochemically as well as morphologically heterogeneous since they were found to synthesize type I and type II collagens. Homogeneous populations of redifferentiated chondrocytes were recovered as floating cells and were shown to express the chondrocyte phenotype in secondary culture. Subcultured cells synthesized type II collagen and its precursors almost exclusively and incorporated 35SO4 into proteoglycan monomer and aggregates to a greater degree than the cells in primary culture. The pattern of proteoglycan monomer and aggregate labeling resembled that of intact cartilage segments and bovine articular chondrocytes. Skin fibroblasts harvested from the same rat fetuses failed to proliferate when maintained under identical conditions. Hence, exogenous hormones, growth factors, and protein are not required for chondrocyte growth and maturation.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abbott J., Holtzer H. The loss of phenotypic traits by differentiated cells, V. The effect of 5-bromodeoxyuridine on cloned chondrocytes. Proc Natl Acad Sci U S A. 1968 Apr;59(4):1144–1151. doi: 10.1073/pnas.59.4.1144. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anderson H. C., Griner S. A. Cartilage induction in vitro. Ultrastructural studies. Dev Biol. 1977 Oct 15;60(2):351–358. doi: 10.1016/0012-1606(77)90133-6. [DOI] [PubMed] [Google Scholar]
  3. Benya P. D., Padilla S. R., Nimni M. E. Independent regulation of collagen types by chondrocytes during the loss of differentiated function in culture. Cell. 1978 Dec;15(4):1313–1321. doi: 10.1016/0092-8674(78)90056-9. [DOI] [PubMed] [Google Scholar]
  4. Benya P. D., Padilla S. R., Nimni M. E. The progeny of rabbit articular chondrocytes synthesize collagen types I and III and type I trimer, but not type II. Verifications by cyanogen bromide peptide analysis. Biochemistry. 1977 Mar 8;16(5):865–872. doi: 10.1021/bi00624a009. [DOI] [PubMed] [Google Scholar]
  5. Bunge M. B., Williams A. K., Wood P. M., Uitto J., Jeffrey J. J. Comparison of nerve cell and nerve cell plus Schwann cell cultures, with particular emphasis on basal lamina and collagen formation. J Cell Biol. 1980 Jan;84(1):184–202. doi: 10.1083/jcb.84.1.184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Burks J. K., Peck W. A. Growth and differentiation of isolated calvarium cells in a serum-free medium. Int Rev Cytol Suppl. 1979;(10):103–115. doi: 10.1016/s0074-7696(08)60616-6. [DOI] [PubMed] [Google Scholar]
  7. Burns J. K., Peck W. A. Bone cells: a serum-free medium supports proliferation in primary culture. Science. 1978 Feb 3;199(4328):542–544. doi: 10.1126/science.564080. [DOI] [PubMed] [Google Scholar]
  8. Canalis E., Peck W. A., Raisz L. G. Stimulation of DNA and collagen synthesis by autologous growth factor in cultured fetal rat calvaria. Science. 1980 Nov 28;210(4473):1021–1023. doi: 10.1126/science.7434011. [DOI] [PubMed] [Google Scholar]
  9. Caplan A. I. Effects of the nicotinamide-sensitive teratogen3-acetylpyridine on chick limb cells in culture. Exp Cell Res. 1970 Oct;62(2):341–355. doi: 10.1016/0014-4827(70)90564-1. [DOI] [PubMed] [Google Scholar]
  10. Chacko S., Abbott J., Holtzer S., Holtzer H. The loss of phenotypic traits by differentiated cells. VI. Behavior of the progeny of a single chondrocyte. J Exp Med. 1969 Aug 1;130(2):417–442. doi: 10.1084/jem.130.2.417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Coon H. G., Cahn R. D. Differentiation in vitro: effects of Sephadex fractions of chick embryo extract. Science. 1966 Sep 2;153(3740):1116–1119. doi: 10.1126/science.153.3740.1116. [DOI] [PubMed] [Google Scholar]
  12. Coon H. G. Clonal stability and phenotypic expression of chick cartilage cells in vitro. Proc Natl Acad Sci U S A. 1966 Jan;55(1):66–73. doi: 10.1073/pnas.55.1.66. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Danes B. S., Scott J. E., Bearn A. G. Further studies on metachromasia in cultured human fibroblasts. Staining of glycosaminoglycans (mucopolysaccharides) by Alcian blue in salt solutions. J Exp Med. 1970 Oct 1;132(4):765–774. doi: 10.1084/jem.132.4.765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Dearden L. C., Bonucci E. Filaments and granules in mitochondrial vacuoles in chondrocytes. Calcif Tissue Res. 1975 Sep 5;18(3):173–194. doi: 10.1007/BF02546239. [DOI] [PubMed] [Google Scholar]
  15. Dearden L. C. Periodic fibrillar material in intracellular vesicles and in electron-dense bodies in chondrocytes of rat costal and tracheal cartilage at various ages. Am J Anat. 1975 Nov;144(3):323–337. doi: 10.1002/aja.1001440305. [DOI] [PubMed] [Google Scholar]
  16. Green W. T., Jr Behavior of articular chondrocytes in cell culture. Clin Orthop Relat Res. 1971 Mar-Apr;75:248–260. doi: 10.1097/00003086-197103000-00030. [DOI] [PubMed] [Google Scholar]
  17. Hajek A. S., Solursh M. The effect of ascorbic acid on growth and synthesis of matrix components by cultured chick embryo chondrocytes. J Exp Zool. 1977 Jun;200(3):377–388. doi: 10.1002/jez.1402000308. [DOI] [PubMed] [Google Scholar]
  18. Hascall G. K. Cartilage proteoglycans: comparison of sectioned and spread whole molecules. J Ultrastruct Res. 1980 Mar;70(3):369–375. doi: 10.1016/s0022-5320(80)80019-0. [DOI] [PubMed] [Google Scholar]
  19. Hascall V. C., Oegema T. R., Brown M., Caplan A. I. Isolation and characterization of proteoglycans from chick limb bud chondrocytes grown in vitro. J Biol Chem. 1976 Jun 10;251(11):3511–3519. [PubMed] [Google Scholar]
  20. Hewitt A. T., Kleinman H. K., Pennypacker J. P., Martin G. R. Identification of an adhesion factor for chondrocytes. Proc Natl Acad Sci U S A. 1980 Jan;77(1):385–388. doi: 10.1073/pnas.77.1.385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Holtzer H., Abbott J., Lash J., Holtzer S. THE LOSS OF PHENOTYPIC TRAITS BY DIFFERENTIATED CELLS IN VITRO, I. DEDIFFERENTIATION OF CARTILAGE CELLS. Proc Natl Acad Sci U S A. 1960 Dec;46(12):1533–1542. doi: 10.1073/pnas.46.12.1533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kahn A. J., Simmons D. J. Chondrocyte-to-osteocyte transformation in grafts of perichondrium-free epiphyseal cartilage. Clin Orthop Relat Res. 1977 Nov-Dec;(129):299–304. doi: 10.1097/00003086-197711000-00042. [DOI] [PubMed] [Google Scholar]
  23. Kato Y., Nasu N., Takase T., Daikuhara Y., Suzuki F. A serum-free medium supplemented with multiplication-stimulating activity (MSA) supports both proliferation and differentiation of chondrocytes in primary culture. Exp Cell Res. 1980 Jan;125(1):167–174. doi: 10.1016/0014-4827(80)90200-1. [DOI] [PubMed] [Google Scholar]
  24. Kawiak J., Moskalewski S., Darzynkiewicz Z. Isolation of chondrocytes from calf cartilage. Exp Cell Res. 1965 Aug;39(1):59–68. doi: 10.1016/0014-4827(65)90007-8. [DOI] [PubMed] [Google Scholar]
  25. Lavietes B. B. Cellular interaction and chondrogenesis in vitro. Dev Biol. 1970 Apr;21(4):584–610. doi: 10.1016/0012-1606(70)90079-5. [DOI] [PubMed] [Google Scholar]
  26. Linthicum D. S., Volcani B. E. Fine structure of rabbit articular chondrocytes in tissue culture during logarithmic and confluent stages of growth. Tissue Cell. 1977;9(4):575–584. doi: 10.1016/0040-8166(77)90027-1. [DOI] [PubMed] [Google Scholar]
  27. Mayne R., Vail M. S., Miller E. J. The effect of embryo extract on the types of collagen synthesized by cultured chick chondrocytes. Dev Biol. 1976 Dec;54(2):230–240. doi: 10.1016/0012-1606(76)90301-8. [DOI] [PubMed] [Google Scholar]
  28. McKeehan W. L., McKeehan K. A., Hammond S. L., Ham R. G. Improved medium for clonal growth of human diploid fibroblasts at low concentrations of serum protein. In Vitro. 1977 Jul;13(7):399–416. doi: 10.1007/BF02615100. [DOI] [PubMed] [Google Scholar]
  29. Meier S., Solursh M. Ultrastructural analysis of the effect of ascorbic acid on secretion and assembly of extracellular matrix by cultured chick embryo chondrocytes. J Ultrastruct Res. 1978 Oct;65(1):48–59. doi: 10.1016/s0022-5320(78)90021-7. [DOI] [PubMed] [Google Scholar]
  30. Merker H. J., Lilja S., Barrach H. J., Günter T. Formation of an atypical collagen and cartilage pattern in limb bud cultures by highly sulfated GAG. Virchows Arch A Pathol Anat Histol. 1978 Oct 18;380(1):11–30. doi: 10.1007/BF00432890. [DOI] [PubMed] [Google Scholar]
  31. Miller E. J. Isolation and characterization of a collagen from chick cartilage containing three identical alpha chains. Biochemistry. 1971 Apr 27;10(9):1652–1659. doi: 10.1021/bi00785a024. [DOI] [PubMed] [Google Scholar]
  32. Miller E. J. Structural studies on cartilage collagen employing limited cleavage and solubilization with pepsin. Biochemistry. 1972 Dec 19;11(26):4903–4909. doi: 10.1021/bi00776a005. [DOI] [PubMed] [Google Scholar]
  33. Müller P. K., Lemmen C., Gay S., Gauss V., Kühn K. Immunochemical and biochemical study of collagen synthesis by chondrocytes in culture. Exp Cell Res. 1977 Aug;108(1):47–55. [PubMed] [Google Scholar]
  34. Oakes B. W., Handley C. J. Proceedings: The ultrastructural morphology and biochemistry of chick embryo chondrocytes in culture. J Anat. 1974 Nov;118(Pt 2):390–391. [PubMed] [Google Scholar]
  35. PECK W. A., BIRGE S. J., Jr, FEDAK S. A. BONE CELLS: BIOCHEMICAL AND BIOLOGICAL STUDIES AFTER ENZYMATIC ISOLATION. Science. 1964 Dec 11;146(3650):1476–1477. doi: 10.1126/science.146.3650.1476. [DOI] [PubMed] [Google Scholar]
  36. Peck W. A., Burks J. K., Wilkins J., Rodan S. B., Rodan G. A. Evidence for preferential effects of parathyroid hormone, calcitonin and adenosine on bone and periosteum. Endocrinology. 1977 May;100(5):1357–1364. doi: 10.1210/endo-100-5-1357. [DOI] [PubMed] [Google Scholar]
  37. Peck W. A., Carpenter J., Messinger K., DeBra D. Cyclic 3'5'-adenosine monophosphate in isolated bone cells. Response to low concentrations of parathyroid hormone. Endocrinology. 1973 Mar;92(3):692–697. doi: 10.1210/endo-92-3-692. [DOI] [PubMed] [Google Scholar]
  38. Schacter L. P. Effect of conditioned media on differentiation in mass cultures of chick limb bud cells. I. Morphological effects. Exp Cell Res. 1970 Nov;63(1):19–32. doi: 10.1016/0014-4827(70)90327-7. [DOI] [PubMed] [Google Scholar]
  39. Scott J. E., Dorling J. Differential staining of acid glycosaminoglycans (mucopolysaccharides) by alcian blue in salt solutions. Histochemie. 1965 Oct 1;5(3):221–233. doi: 10.1007/BF00306130. [DOI] [PubMed] [Google Scholar]
  40. Shepard N., Mitchell N. The localization of articular cartilage proteoglycan by electron microscopy. Anat Rec. 1977 Apr;187(4):463–476. doi: 10.1002/ar.1091870404. [DOI] [PubMed] [Google Scholar]
  41. Sokoloff L., Malemud C. J., Green W. T., Jr Sulfate incorporation by articular chondrocytes in monolayer culture. Arthritis Rheum. 1970 Mar-Apr;13(2):118–124. doi: 10.1002/art.1780130203. [DOI] [PubMed] [Google Scholar]
  42. Solursh M., Meier S. A conditioned medium (CM) factor produced by chondrocytes that promotes their own differentiation. Dev Biol. 1973 Feb;30(2):279–289. doi: 10.1016/0012-1606(73)90089-4. [DOI] [PubMed] [Google Scholar]
  43. Solursh M., Reiter R. S. The enhancement of in vitro survival and chondrogenesis of limb bud cells by cartilage conditioned medium. Dev Biol. 1975 Jun;44(2):278–287. doi: 10.1016/0012-1606(75)90398-x. [DOI] [PubMed] [Google Scholar]
  44. Stockwell R. A. Structural and histochemical aspects of the pericellular environment in cartilage. Philos Trans R Soc Lond B Biol Sci. 1975 Jul 17;271(912):243–245. doi: 10.1098/rstb.1975.0048. [DOI] [PubMed] [Google Scholar]
  45. Taub M., Chuman L., Saier M. H., Jr, Sato G. Growth of Madin-Darby canine kidney epithelial cell (MDCK) line in hormone-supplemented, serum-free medium. Proc Natl Acad Sci U S A. 1979 Jul;76(7):3338–3342. doi: 10.1073/pnas.76.7.3338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Thyberg J. Electron microscopy of cartilage proteoglycans. Histochem J. 1977 May;9(3):259–266. doi: 10.1007/BF01004761. [DOI] [PubMed] [Google Scholar]
  47. Uitto J., Allan R. E., Polak K. L. Conversion of type II procollagen to collagen. Extracellular removal of the amino-terminal and carboxy-terminal extensions without a preferential sequence. Eur J Biochem. 1979 Aug 15;99(1):97–103. doi: 10.1111/j.1432-1033.1979.tb13236.x. [DOI] [PubMed] [Google Scholar]
  48. Uitto J. Biosynthesis of type II collagen. Removal of amino-and carboxy-terminal extensions from procollagen synthesized by chick embryo cartilage cells. Biochemistry. 1977 Jul 26;16(15):3421–3429. doi: 10.1021/bi00634a020. [DOI] [PubMed] [Google Scholar]
  49. Uitto J. Collagen polymorphism: isolation and partial characterization of alpha 1(I)-trimer molecules in normal human skin. Arch Biochem Biophys. 1979 Feb;192(2):371–379. doi: 10.1016/0003-9861(79)90105-x. [DOI] [PubMed] [Google Scholar]
  50. Umansky R. The effect of cell population density on the developmental fate of reaggregating mouse limb bud mesenchyme. Dev Biol. 1966 Feb;13(1):31–56. doi: 10.1016/0012-1606(66)90048-0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES